The Electroreceptors: Diversity in Structure and Function

  • Harold H. Zakon


Sensory systems that operate in an aquatic habitat face different environmental constraints than their terrestrial counterparts in the detection of stimuli. The different transmission properties of air and water for sound, light, and chemical stimuli have resulted in habitat-specific differences in the structure and function of many sensory receptor organs. Electroreception, on the other hand, is unique to the aquatic habitat and, since air behaves as an insulator, rather than a conductor, is physically restricted to it.


Electric Organ Electric Organ Discharge Electric Fish Receptor Organ Electrosensory System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bass, A.H. (1986) Electric organs revisited: evolution of a vertebrate communication and orientation organ, in Electroreception, Bullock, T.H., and Heiligenberg, W. (eds.), John Wiley and Sons, New York, pp. 13–70.Google Scholar
  2. Bass, A.H., and Hopkins, C.D. (1980) Coding of species-specific signals in mormyrid electric fish. I. Frequency characteristics. Soc. Neurosci. Abst., 6:604.Google Scholar
  3. Bass, A.H., and Hopkins, C.D. (1983) Hormonal control of sexual differentiation: changes in electric organ discharge waveform, Science, 220:971–974.PubMedCrossRefGoogle Scholar
  4. Bass, A.H., and Hopkins, C.D. (1984) Shifts in frequency tuning of electroreceptors in androgen-treated mormyrid fish, J. Comp. Physiol., 155:713–724.CrossRefGoogle Scholar
  5. Bastian, J. (1976) Frequency response characteristics of electroreceptors in weakly electric fish (Gymnotoidei) with a pulse discharge, J. Comp. Physiol., 112:165–180.CrossRefGoogle Scholar
  6. Bastian, J. (1977) Variations in the frequency response of electroreceptors dependent on receptor location in weakly electric fish (Gymnotoidei) with a pulse discharge, J. Comp. Physiol., 121:53–64.CrossRefGoogle Scholar
  7. Bastian, J. (1981) Electrolocation. I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli, J. Comp. Physiol., 144:465–479.CrossRefGoogle Scholar
  8. Bell, C.C. (1982) Properties of a modifiable efference copy in an electric fish, J. Neurophysiol., 47:1043–1056.PubMedGoogle Scholar
  9. Bell, C.C., Bradbury, J., and Russell, C.J. (1976) The electric organ of a mormyrid as a current and voltage source, J. Comp. Physiol., 110:65–88.Google Scholar
  10. Bell, C.C., and Russell, C.J. (1978) Effect of electric organ discharge on ampullary receptors in a mormyrid, Brain Res., 145:85–96.PubMedCrossRefGoogle Scholar
  11. Bennett, M.V.L. (1967) Mechanisms of electroreception, in Lateral Line Detectors, Cahn, P. (ed.), Indiana University Press, Bloomington, pp. 313–393.Google Scholar
  12. Bennett, M.V.L. (1971) Elecroreception in Fish Physiology, vol. 5, Hoar, W.S., and Randall, D.S. (eds.), Academic Press, New York, pp. 493–574.Google Scholar
  13. Bennett, M.V.L., and Obara, S. (1986) Ionic and pharmacological mechanisms of electroreception, in Electroreception, Bullock, T.H., and Heiligenberg, W. (eds.), John Wiley and Sons, New York, pp. 157–181.Google Scholar
  14. Bodznick, D.A., and Northcutt, R.G. (1981) Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive, Science, 212:465–467.PubMedCrossRefGoogle Scholar
  15. Bodznick, D.A., and Preston, D.G. (1983) Physiological characterization of electroreceptors in the lampreys Icthyomyzon unicuspis and Petromyzon marinus, J. Comp. Physiol., 152:209–217.CrossRefGoogle Scholar
  16. Bretschneider, F., Kroesbergen, G., and Beijnink, F.B. (1979) Functioning of catfish electroreceptors: relation between skin potential and receptor activity, J. Physiol. (Paris), 75:343–347.Google Scholar
  17. Bullock, T.H., Behrend, K., and Heiligenberg, W. (1975) Comparison of the jamming avoidance response in gymnotoid and gymnarchid electric fish: a case of convergent evolution of behavior and its sensory basis, J. Comp. Physiol., 103:97–121.CrossRefGoogle Scholar
  18. Bullock, T.H., Bodznick, D.A., and Northcutt, R.G. (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality, Brain Res. Rev., 6:25–46.CrossRefGoogle Scholar
  19. Clusin, W.T., and Bennett, M.V.L. (1977) Calcium activated conductance in skate electroreceptors: voltage clamp experiments, J. Gen. Physiol., 69:145–182.PubMedCrossRefGoogle Scholar
  20. Clusin, W.T., and Bennett, M.V.L. (1979) The oscillatory responses of skate electroreceptors to small voltage stimuli, J. Gen. Physiol., 73:685–702.PubMedCrossRefGoogle Scholar
  21. Derbin, C., Szabo, T. (1968) Ultrastructure of an electroreceptor (knollenorgan) in the mormyrid fish, Gnathonemus petersii, Int. J. Ultrastruct. Res., 22:469–484.PubMedCrossRefGoogle Scholar
  22. Dijkgraaf, S., and Kalmijn, A.J. (1966) Versuche zur biologischen Bedeutung der Lorenzinischen Ampullen bei den Elasmobranchiern, Z. Vgl. Physiol., 53:187–194.CrossRefGoogle Scholar
  23. Dunning, B.B. (1973) A quantitative and comparative analysis of the tonic electroreceptors of Gnathonemus, Gymnotus and Kryptopterus. Thesis, U. Minnesota, Minneapolis.Google Scholar
  24. Dye, J., and Meyer, J.H. (1986) The central nervous control of the electric organ discharge in weakly electric fish, in Electroreception, Bullock T.H., Heilingenberg W. (eds.), John Wiley, New York.Google Scholar
  25. Feng, A.S., and Bullock, T.H. (1977) Neuronal mechanisms for object discrimination in the weakly electric fish, Eigenmannia virescens, J. Exp. Biol., 66:141–158.PubMedGoogle Scholar
  26. Flock, Å., and Russell, I.J. (1973) The postsynaptic action of efferent fibers in the lateral line organ of the burbot Lota lota, J. Physiol. 235:591–605.PubMedGoogle Scholar
  27. Fritsch, B., and Münz, H. (1985) Amphibian electroreceptors, in Electroreception. Bullock T.H., Heiligenberg, W. (eds.), John Wiley, New York.Google Scholar
  28. Hagedorn, M., and Heiligenberg, W. (1985) Court and spark: electric signals in the courtship and mating of gymnotoid fish, Anim, Behav. 33:254–265.CrossRefGoogle Scholar
  29. Hagiwara, S., and Morita, H. (1963) Coding mechanisms of electroreceptors fibers in some electric fish, J. Neurophysiol. 26:551–567.PubMedGoogle Scholar
  30. Hagiwara, S., Kusano, K., and Negishi, K. (1962) Physiological properties of electroreceptors of some gymnotids, J. Neurophysiol., 25:430–449.PubMedGoogle Scholar
  31. Heiligenberg, W. (1974) Electrolocation and jamming avoidance in a Hypopygus (Rhamphthychthyidae, Gymnotoidei), an electric fish with pulse-type discharges, J. Comp. Physiol. 91:233–240.CrossRefGoogle Scholar
  32. Heiligenberg, W. (1977) Principles of Electrolocation and Jamming Avoidance in Electric Fish, Studies of Brain Function I, Springer-Verlag, Berlin.Google Scholar
  33. Heiligenberg, W., and Altes, R.A. (1978) Phase sensitivity in electroreception, Science, 199:1001–1004.PubMedCrossRefGoogle Scholar
  34. Heiligenberg, W., and Bastian, J. (1984) The electric sense of weakly electric fish, Annu. Rev. Physiol., 46:561–583.PubMedCrossRefGoogle Scholar
  35. Himstedt, W., Kopp, J., and Schmidt, W. (1982) Electroreception guides feeding behavior in amphibians, Naturwissenschaften, 69:552.CrossRefGoogle Scholar
  36. Hopkins, C.D. (1972) Sex differences in signalling in an electric fish, Science 176:1035–1037.PubMedCrossRefGoogle Scholar
  37. Hopkins, C.D. (1973) Lightening as background noise for communication among electric fish, Nature, 242:268–270.CrossRefGoogle Scholar
  38. Hopkins, C.D. (1974) Electric communication: functions in the social behavior of Eigenmannia virescens, Behaviour, 50:270–305.CrossRefGoogle Scholar
  39. Hopkins, C.D. (1976) Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish, J. Comp. Physiol., 111:-171–207.CrossRefGoogle Scholar
  40. Hopkins, C.D. (1981) On the diversity of electric signals in a community of mormyrid electric fish in West Africa, Am. Zool., 21:211–222.Google Scholar
  41. Hopkins, C.D. (1984) Functions and mechanisms in elecroreception, in Fish Neurobiology vol. 1, Brain Stem and Sense Organs, Northcutt, R.G., and Davis, R.E. (eds.), University of Michigan Press, Ann Arbor, pp. 215–259.Google Scholar
  42. Hopkins, C.D., and Bass, A.H. (1980) Coding of species-specific signals in mormyrid electric fish. II. Temporal characteristics, Soc. Neurosci. Abst., 6:604.Google Scholar
  43. Hopkins, C.D., and Bass, A.H. (1981) Temporal coding of species recognition signals in an electric fish, Science, 212:85–87.PubMedCrossRefGoogle Scholar
  44. Hopkins, C.D., and Heiligenberg, W.H. (1978) Evolutionary designs for electric signals and electroreceptors in gymnotoid fishes of Surinam, Behav. Ecol. Sociobiol., 3:113–134.CrossRefGoogle Scholar
  45. Hudspeth, A.J., and Corey, D.P. (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli, Proc. Nat. Acad. Sci. U.S.A., 74:2407–2411.CrossRefGoogle Scholar
  46. Jørgensen, J.M. (1982) Fine structure of the ampullary organs of the bichir Polypterus senegalus Cuvier, 1829 (Pisces: Brachiopterygii) with some notes on the phylogenetic development of electroreceptors, Acta Zool., 63:211–217.CrossRefGoogle Scholar
  47. Kalmijn, A. (1974) The detection of electric fields from inanimate and animate sources other than electric organs, in Handbook of Sensory Physiology, vol. III/3, Fessard, A. (ed.), Springer-Verlag, New York, pp. 147–200.Google Scholar
  48. Kalmijn, A.J. (1984) Theory of electromagnetic orientation: a further analysis, in Comparative Physiology of Sensory Systems, Bolis, L. Keyenes, R.D., and Maddrell, S.H.P. (eds.), Cambridge University Press, Cambridge, U.K., pp. 525–560.Google Scholar
  49. Keller, C., Zakon, H.H., and Sanchez, D.Y. (1986) Evidence for a direct effect of androgens on electroreceptor tuning, J. Comp. Physiol. 158:301–310.CrossRefGoogle Scholar
  50. Knudsen, E.I. (1975) Spatial aspects of the electric fields generated by weakly electric fish, J. Comp. Physiol., 99:103–118.CrossRefGoogle Scholar
  51. Lissmann, H.W., and Mullinger, A.M. (1968) Organization of ampullary electric receptors in Gymnotidae (Pisces), Proc. R. Soc., 169:345–378.CrossRefGoogle Scholar
  52. Lorenzini, S. (1678) Osservazioni intorno alle torpedini, Florence, Italy.Google Scholar
  53. Meyer, J.H. (1982) Behavioral responses of weakly electric fish to complex impedances, J. Comp. Physiol., 145:459–470.CrossRefGoogle Scholar
  54. Meyer, J.H. (1983) Steroid influences upon the discharge frequency of a weakly electric fish, J. Comp. Physiol., 153:29–38.CrossRefGoogle Scholar
  55. Meyer, J.H., and Zakon, H.H. (1982) Androgens alter the tuning of electroreceptors, Science, 217: 635–637.PubMedCrossRefGoogle Scholar
  56. Meyer, J.H., Zakon, H.H., and Heiligenberg, W. (1984) Steroid influences upon the electrosensory system of weakly electric fish: direct effects upon discharge frequency with indirect effects upon electroreceptor tuning, J. Comp. Physiol., 154:625–631.CrossRefGoogle Scholar
  57. Montgomery, J. (1984a) Noise cancellation in the electrosensory system of the thornback ray: common mode rejection of input produced by the animal’s own ventilatory movement, J. Comp. Physiol., 155:102–112.CrossRefGoogle Scholar
  58. Montgomery, J. (1984b) Frequency response characteristics of primary and secondary neurons in the electrosensory system of the thornback ray, Comp. Biochem. Physiol., 79a: 189–195.CrossRefGoogle Scholar
  59. Murray, R.W. (1974) The ampullae of Lorenzini, in Handbook of Sensory Physiology vol. III/3, Fessard, A. (ed.), Springer-Verlag, New York, pp. 125–146.Google Scholar
  60. Murray, R.W., and Potts, T.W. (1961) The composition of the endolymph, and other body fluids of elasmobranchs, Comp. Biochem. Physiol., 2:65–75.CrossRefGoogle Scholar
  61. Nelson, J.S. (1983) Fishes of the World, John Wiley and Sons, New York.Google Scholar
  62. Northcutt, R.G. (1980) Anatomical evidence of electroreception in the coelacanth (Latimeria chalumnae), Zentralbl. Veterinaer Med. Reihe C, 9:289–295.Google Scholar
  63. Northcutt, R.G. (1986) Electroreception in non-teleost bony fishes, in Electroreception, Bullock, T.H., and Heiligenberg, W. (eds.), John Wiley and Sons, New York. pp. 257–285.Google Scholar
  64. Northcutt, R.G., and Gans, C. (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins, Q. Rev. Biol., 58:1–28.PubMedCrossRefGoogle Scholar
  65. Obara, S. (1976) Mechanisms of electroreception in ampullae of Lorenzini of the marine catfish Plotosus, in Electrobiology of Nerve, Synapse and Muscle, Reuben, J.P., Purpura, D.P., Bennett, M.V.L., and Kandel, E.R. (ed.), Raven Press, New York, pp. 128–147.Google Scholar
  66. Obara, S. (1981) High sensitivity processes in the sensory transduction of the Plotosus electroreceptors, in Advances in Physiological Sciences, vol. 31, Sensory Physiology of Aquatic Lower Vertebrates, Szabo, T., and Czeh, G. (eds.), Akadamiai Kaido, Budapest, pp. 41–56.Google Scholar
  67. Okitsu, S., Umekita, S., and Obara, S. (1978) Ionic compositions of the media across the sensory epithelium in the ampullae of Lorenzini of the marine catfish, Plotosus, J. Comp. Physiol., 126:115–121.CrossRefGoogle Scholar
  68. Peters, R.C., and Buwalda, R.J.A. (1972) Frequency response of the electröreceptors of the catfiìsh, Ictalurus nebulosus LeS., J. Comp. Physiol., 79:29–38.CrossRefGoogle Scholar
  69. Quinet, P. (1971) Étude systématique des organes sensoriels de la peau des Mormyriformes, Ann. Mus. R. Afr. Cent. Ser. Quarto Zool., 190:1–97.Google Scholar
  70. Ronan, M., and Bodznick, D. (1984) Identification of electroreceptors in lamprey, Soc. Neurosci. Abst., 10:853.Google Scholar
  71. Russell, I.J., and Roberts, B.L. (1974) Active reduction of lateral-line sensitivity in swimming dogfish, J. Comp. Physiol., 94:7–15.CrossRefGoogle Scholar
  72. Sanchez, D.Y., and Zakon, H.H. (1986) Neural correlates of cell addition in the electrosen- sory system. Soc. Neurosci. Abstr. 12:313.Google Scholar
  73. Scheich, H. (1977) Neural basis of communication in the high frequency electric fish, Eigenmannia virescens (jamming avoidance response). III. Central integration in the sensory pathway and control of the pacemaker, J. Comp. Physiol., 113:229–255.CrossRefGoogle Scholar
  74. Scheich, H., Bullock, T.H., and Hamstra, R.H. (1973) Coding properties of two classes of afferent nerve fibers: high frequency electroreceptors in the electric fish, Eigenmannia, J. Neurophysiol., 36:39–60.PubMedGoogle Scholar
  75. Schweitzer, J. (1985) Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata): a single unit study, J. Comp. Physiol, (in press).Google Scholar
  76. Sejnowski, T.J., and Yodlowski, M.L. (1982) A freeze-fracture study of the skate electroreceptor, J. Neurocytol., 11:897–912.PubMedCrossRefGoogle Scholar
  77. Sellick, P., and Johnstone, B.M. (1975) Production and role of inner ear fluid, Prog. Neurobiol., 5:337–362.PubMedCrossRefGoogle Scholar
  78. Szabo, T. (1965) Sense organs of the lateral line system in some electric fish of the gymnotidae, mormyridae and gymnarchidae, J. Morphol., 117:229–250.PubMedCrossRefGoogle Scholar
  79. Szabo, T. (1970) Morphologische and Funktionelle Aspekte bei Elektrorezeptoren, Verh. Dtsch. Zool. Ges., 64: 141–148.Google Scholar
  80. Szabo, T. (1974) Anatomy of the specialized lateral line organs of electroreception, in Handbook of Sensory Physiology., vol. III/3, Fessard. A. (ed.), Springer-Verlag, New York, pp. 13–58.Google Scholar
  81. Szabo, T., and Hagiwara, S. (1967) A latency-change mechanism involved in sensory coding of electric fish (Mormyrids), Physiol. & Behav., 2:331–335.CrossRefGoogle Scholar
  82. Szabo, T., Kalmijn, A.J., Enger, P.S., and Bullock, T.H. (1972) Microampullary organs and a submandibular sense organ in the fresh water ray, Potamotrygon, J. Comp. Physiol., 79:15–27.CrossRefGoogle Scholar
  83. Szabo, T., and Wersäll, J. (1970) Ultrastructure of an electroreceptor (Mormyromast) in a mormyrid fish, Gnathonemus petersi II, J. Ultrastruct. Res., 30:473–490.PubMedCrossRefGoogle Scholar
  84. Szamier, R.B., and Bennett, M.V.L. (1980) Ampullary electroreceptors in the fresh water ray, Potamotrygon, J. Comp. Physiol., 138:225–230.CrossRefGoogle Scholar
  85. Szamier, R., and Wachtel, A.W. (1970) Special cutaneous receptor organs of fish. VI. Ampullary and tuberous organs of Hypopomus, J. Ultrastruct. Res., 30:450–471.PubMedCrossRefGoogle Scholar
  86. Teeter, J.H., and Bennett, M.V.L. (1981) Synaptic transmission in the ampullary electroreceptor of the transparent catfish, Kryptopterus, J. Comp. Physiol., 142:371–377.CrossRefGoogle Scholar
  87. Teeter, J.H., Szamier, R.B., and Bennett, M.V.L. (1981) Ampullary electroreceptors in the sturgeon Scaphyrynchus platorhynchus (Rafinesque), J. Comp. Physiol., 138:213–223.CrossRefGoogle Scholar
  88. Thomson, K.S. (1977) On the individual history of cosmine and a possible electroreceptive function of the pore-canal system in fossil fishes, in Problems in Vertebrate Evolution, Andrews, S.M., Miles, R.S., and Walker, A.D. (ed.), Academic Press, New York, pp. 247–272.Google Scholar
  89. Viancour, T.A. (1979) Electroreceptors of a weakly electric fish. II. Individually tuned receptor oscillations, J. Comp. Physiol., 133:327–338.CrossRefGoogle Scholar
  90. Wachtel, A.W., and Szamier, R.B. (1966) Special cutaneous receptor organs of fish: the tuberous organs of Eigenmannia, J. Morphol., 119:51–80.CrossRefGoogle Scholar
  91. Wachtel, A.W., and Szamier, R.B. (1969) Special cutaneous receptor organs of fish. IV. Ampullary organs of the nonelectric catfish, Kryptopterus, J. Morphol., 128:291–202.PubMedCrossRefGoogle Scholar
  92. Waltman, B. (1966) Electrical properties and fine structure of the ampullary canals of Lorenzini, Acta. Physiol. Scand., 66 (supp. 264): 1–60.Google Scholar
  93. Watson, D., and Bastian, J. (1979) Frequency response characteristics of electroreceptors in the weakly electric fish Gymnotus carapo, J. Comp. Physiol., 134:191–202.CrossRefGoogle Scholar
  94. Westby, G.W.M., and Kirschbaum, F. (1978) Emergence and development of the electric organ discharge in the mormyrid fish, Pollimyrus isidori. II. Replacement of the larval by the adult discharge, J. Comp. Physiol., 127:45–59.CrossRefGoogle Scholar
  95. Whitear, M., and Lane, E.B. (1983) Multivillous cells: epidermal sense cells of unknown function in lamprey skin, J. Zool. (Lond.), 201:259–272.CrossRefGoogle Scholar
  96. Zakon, H.H. (1984a) Postembryonic changes in the peripheral electrosensory system of a weakly electric fish: addition of receptor organs with age, J. Comp. Neurol., 228:557–570.PubMedCrossRefGoogle Scholar
  97. Zakon, H.H. (1984b) The ionic basis of the oscillatory receptor potential of tuberous electroreceptors in Sternopygus, Soc. Neurosci. Abst., 10:193.Google Scholar
  98. Zakon, H.H. (1986) Emergence of tuning in newly-generated electroreceptors, J. Neurosci. (submitted).Google Scholar
  99. Zakon, H.H. (1986) The electroreceptive periphery, in Electroreception, Bullock, T.H., and Heiligenberg, W. (eds.), John Wiley and Sons, New York. pp. 103–156.Google Scholar
  100. Zakon H.H. (in press) Variation in the mode of receptor cell addition in the electrosensory system of gymnotiform fishes. J. Comp. Neurol.Google Scholar
  101. Zakon, H.H., and Meyer, J.H. (1983) Plasticity of electroreceptor tuning in the weakly electric fish Sternopygus dariensis, J. Comp. Physiol., 153:477–487.CrossRefGoogle Scholar
  102. Zipser, B., and Bennett, M.V.L. (1973) Tetrodotoxin resistant electrically exitable responses of receptor cells, Brain Res., 62:253–259.PubMedCrossRefGoogle Scholar
  103. Zipser, B., and Bennett, M.V.L. (1976) Interaction of electrosensory and electromotor signals in the lateral line lobe of a mormyrid fish, J. Neurophysiol., 39:713–721.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Harold H. Zakon
    • 1
  1. 1.Department of ZoologyUniversity of TexasAustinUSA

Personalised recommendations