Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 80))

Abstract

Algebraic group actions on affine space, C n, are determined by finite dimensional algebraic subgroups of the full algebraic automorphism group, Aut C n. This group is anti-isomorphic to the group of algebra automorphisms of \( F_{n}= \text{\textbf{C}}[x_{1}, \cdots, x_{n}] \) by identifying the indeterminates x 1, …, x n with the standard coordinate functions: σ ∈ Aut C n defines σ* ∈ Aut F n by \(\sigma ^{*}f(x)= f(\sigma x)\), where fF n and xC n. In fact, an automorphism σ is often defined in terms of the polynomials \((\sigma ^{*}x_{1},\cdots, \sigma ^{*}x_{n})\). Two special subgroups of Aut C n play an important role in determining the structure of the finite dimensional algebraic subgroups. The first is the affine linear group,

$$A_{n}= \left \{ \sigma = (f_{1}, \cdots, f_{n}) \in \text{Aut} \textbf{C}^{n}\vert \text{deg} f_{i}\leq 1 \right \}$$

which is the semi-direct product of the general linear group, GL n(C), and the abelian group of translations, \(T_{n}\cong \textbf{C}^{n}\). The second is the ‘Jonquière’, or ‘triangular’ subgroup

$$B_{n}= \left \{ \sigma = (f_{1}, \cdots, f_{n}) \in \text{Aut} \textbf {C}^{n}\vert f_{i}= c_{i}x_{i}+ h_{i}, c_{i}\in \textbf{C}, h_{i}\in \textbf{C}[x_{i+1}, \cdots, x_{n}] \right \}$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bass, H.: Algebraic group actions on affine space. Contemporary Math. 43, 1–23 (1985)

    MathSciNet  Google Scholar 

  2. Bass, H.: A non-triangular action of G a on A 3. J. Pure Appl. Alg. 33, 1–5 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bass, H., Haboush, W.: Linearizing reductive group actions. Trans. Amer. Math. Soc. 292, 463–482 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bialynicki-Birula, A.: Remarks on the action of an algebraic torus on k n, I. Bull. Acad. Pol. Sci. 14, 177–181 (1966)

    MathSciNet  Google Scholar 

  5. Borel, A.: On affine algebraic homogeneous spaces. Arch. Math. 45, 74–78 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cline, E., Parshall B., Scott L.: Induced modules and affine quotients. Math. Ann. 230, 1–14 (1974)

    Article  MathSciNet  Google Scholar 

  7. Kraft, EL: Algebraic group actions on affine spaces. In: Geometry of Today (Roma 1984). Boston, Basel, Stuttgart: Birkhäuser 1985.

    Google Scholar 

  8. Kraft, H., Popov, V.: Semisimple group actions on the three dimensional affine space are linear. Comment. Math. Helv. 60, 466–479 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Matsushima, Y.: Espaces homogenènes de Stein des groupes de Lie complexes. Nagoya Math. J. 18, 153–164 (1961)

    MathSciNet  MATH  Google Scholar 

  10. Popov, V.: On actions of G a on A n. In: Algebraic Groups (Utrecht 1986), Lecture Notes in Math. vol. 1271. Berlin, Heidelberg, New York: Springer 1987.

    Google Scholar 

  11. Richardson, R.: Affine coset spaces of affine algebraic groups. Bull. London. Math. Soc. 91, 38–41 (1977)

    Article  Google Scholar 

  12. Serre, J.P.: Espaces fibrés algébriques. In: Anneaux de Chow et Applications. Séminaire Chevelley, Paris 1958.

    Google Scholar 

  13. Snow, D.: Reductive group actions on Stein spaces. Math. Ann. 259, 79–97 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Snow, D.: Stein quotients of connected complex Lie groups. Manuscr. Math. 50, 185–214 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Snow, D.: Invariants of holomorphic affine flows. Arch. Math. 49, 440–449 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Snow, D.: Triangular actions on C 3. Manuscr. Math. 76, 1–10 (1988)

    Google Scholar 

  17. Winkelmann, J.: On Stein homogeneous manifolds and free holomorphic C actions on C n. preprint

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Snow, D.M. (1989). Unipotent Actions on Affine Space. In: Kraft, H., Petrie, T., Schwarz, G.W. (eds) Topological Methods in Algebraic Transformation Groups. Progress in Mathematics, vol 80. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3702-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3702-0_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8219-8

  • Online ISBN: 978-1-4612-3702-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics