Advertisement

Completely Reducible Lie Algebras of Linear Transformations

Chapter
  • 503 Downloads
Part of the Contemporary Mathematicians book series (CM)

Abstract

W. W. Morozov [10] and [11]1 has announced and indicated proofs of the following theorems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    A. A. Albert, A structure theory for Jordan algebras, Ann. of Math. vol. 48 (1947) pp. 546–567.CrossRefGoogle Scholar
  2. 2.
    E. Cartan, Thèse, Paris, 1894.Google Scholar
  3. 3.
    C. Chevalley, A new kind of relationship between matrices, Amer. J. Math. vol. 65 (1943) pp. 521–531.CrossRefGoogle Scholar
  4. 4.
    C. Chevalley and H. F. Tuan, On algebraic Lie algebras, Proc. Nat. Acad. Sci. U.S.A. vol. 31 (1945) pp. 195–196.CrossRefGoogle Scholar
  5. 5.
    M. Gotô, On algebraic Lie algebras, Journal of the Mathematical Society of Japan vol. 1 (1948) pp. 29–45.CrossRefGoogle Scholar
  6. 6.
    N. Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math. vol. 36 (1935) pp. 875–881.CrossRefGoogle Scholar
  7. 7.
    N. Jacobson, Lie and Jordan triple systems, Amer. J. Math. vol. 71 (1949) pp. 149–170.CrossRefGoogle Scholar
  8. 8.
    N. Jacobson, Derivation and multiplication algebras of semi-simple Jordan algebras, Ann. of Math. vol. 50 (1949) pp. 866–874.CrossRefGoogle Scholar
  9. 9.
    A. Malcev, On solvable Lie algebras, Bull. Acad. Sci. URSS. Sér. Math. vol. 9 (1945) pp. 329–356.Google Scholar
  10. 10.
    W. W. Morozov, On a nilpotent element of a semi-simple Lie algebra, C. R. (Doklady) Acad. Sci. URSS. vol. 36 (1942) pp. 83–86.Google Scholar
  11. 11.
    W. W. Morozov, On the centralizer of a semi-simple subalgebra of a semi-simple Lie algebra, C. R. (Doklady) Acad. Sci. URSS. vol. 36 (1942) pp. 259–261.Google Scholar

Copyright information

© Birkhäuser Boston 1989

Authors and Affiliations

  1. 1.Yale UniversityUSA

Personalised recommendations