Skip to main content

Classification and Representation of Semi-Simple Jordan Algebras

  • Chapter
  • 657 Accesses

Part of the book series: Contemporary Mathematicians ((CM))

Abstract

In the present paper we use the term special Jordan algebra to denote a (non-associative) algebra \( \mathfrak{K} \) over a field of characteristic not two for which there exists a 1–1 correspondence aa R of \( \mathfrak{K} \) into an associative algebra \( \mathfrak{A} \) such that

$$ {\left( {a + b} \right)^R} = {a^R} + {b^R},\;{\left( {\alpha a} \right)^R} = \alpha {a^R} $$
(1)

for α in the underlying field and

$$ {\left( {a \cdot b} \right)^R} = \left( {{a^R}{b^R} + {b^R}{a^R}} \right)/2 $$
(2)

In the last equation the • denotes the product defined in the algebra \( \mathfrak{K} \). When there is no risk of confusion we shall also use the · to denote the Jordan product (xy+yx)/2 in an associative algebra. Jordan multiplication is in general non-associative but it is easy to verify that the following special rules hold:

$$ a \cdot b = b \cdot a,\;\left( {a \cdot b} \right) \cdot {a^2} = a \cdot \left( {b \cdot {a^2}} \right) $$
(3)

Hence these rules hold for the product in a special Jordan algebra.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. A. Albert On a certain algebra of quantum mechanics, Ann. of Math. vol. 35 (1934) pp. 65–73.

    Article  Google Scholar 

  2. A. A. Albert On Jordan algebras of linear transformations, Trans. Amer. Math. Soc. vol. 59 (1946) pp. 524–555.

    Article  Google Scholar 

  3. A. A. Albert The Wedderburn principal theorem for Jordan algebras, Ann. of Math. vol. 48 (1947) pp. 546–567.

    Article  Google Scholar 

  4. A. A. Albert A structure theory for Jordan algebras, Ann. of Math. vol. 48 (1947) pp. 546–567.

    Article  Google Scholar 

  5. A. A. Albert Non-associative algebras I, Ann. of Math. vol. 43 (1942) pp. 685–707.

    Article  Google Scholar 

  6. G. Ancochea On semi-automorphisms of division algebras, Ann. of Math. vol. 48 (1947) pp. 147–154.

    Article  Google Scholar 

  7. G. Birkhoff and P. Whitman Representations of Jordan and Lie algebras, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 116–136.

    Article  Google Scholar 

  8. R. Brauer and H. Weyl Spinors in n dimensions, Amer. J. Math. vol. 57 (1935) pp. 425–449.

    Article  Google Scholar 

  9. N. Jacobson Abstract derivations and Lie algebras, Trans. Amer. Math. Soc. vol. 42 (1937) pp. 206–224.

    Article  Google Scholar 

  10. N. Jacobson An extension of Galois theory to non-normal and non-separable fields, Amer. J. Math. vol. 66 (1944) pp. 1–29.

    Article  Google Scholar 

  11. N. Jacobson The center of a Jordan ring, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 316–322.

    Article  Google Scholar 

  12. N. Jacobson Isomorphisms of Jordan rings, Amer. J. Math. vol. 70 (1948) pp. 317–326.

    Article  Google Scholar 

  13. P. Jordan, J. v. Neumann and E. Wigner On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. vol. 35 (1934) pp. 29–64.

    Article  Google Scholar 

  14. G. K. Kalisch On special Jordan algebras, Trans. Amer. Math. Soc. vol. 61 (1947) pp. 482–494.

    Article  Google Scholar 

  15. I. Kaplansky Semi-automorphisms of rings, Duke Math. J. vol. 14 (1947) pp. 521–527.

    Article  Google Scholar 

  16. R. Schafer The exceptional simple Jordan algebras, Amer. J. Math. vol. 70 (1948) pp. 82–94.

    Article  Google Scholar 

  17. E. Witt Theorie der quadratischen For men in beliebigen Korpern, J. Reine Angew. Math. vol. 176 (1937) pp. 31–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Boston

About this chapter

Cite this chapter

Jacobson, F.D., Jacobson, N. (1989). Classification and Representation of Semi-Simple Jordan Algebras. In: Nathan Jacobson Collected Mathematical Papers. Contemporary Mathematicians. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3694-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3694-8_3

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8215-0

  • Online ISBN: 978-1-4612-3694-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics