Skip to main content

Part of the book series: Contemporary Mathematicians ((CM))

  • 680 Accesses

Abstract

The present paper is devoted to a study of subspaces of an associative algebra that are closed relative to the ternary operation [[a, b], c] where \( \left[ {a,b} \right] = ab - ba \) Such systems—called Lie triple systems—arise in a natural way in the study of Jordan algebras and of Jordan triple systems. The latter are defined to be subspaces of an associative algebra that are closed relative to {{a, b}, c} where \( \left\{ {a,b} \right\} = ab + ba \). In the first part of this paper we consider some general properties of such systems. The second half of our paper is concerned with the study of certain particular Lie and Jordan triple systems that have arisen in quantum mechanics. These systems have a basis g 1 g 2,…, g n and multiplication tables, respectively

$$ \begin{gathered} \left[ {\left[ {g_i ,g_j } \right],g_k } \right] = \delta _{ki} g_j - \delta _{kj} g_i \hfill \\ g_i g_j g_k + g_k g_j g_i = - \delta _{ij} g_k - \delta _{kj} g_i \hfill \\ \end{gathered} $$

The latter relations have been introduced by Duffin 1 and by Kemmer 2 in the study of meson fields and there is an extensive literature on the representation theory of such systems. In this paper we consider an extension of this theory.

Received February 22, 1948.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. A. Albert, “On Jordan algebras of linear transformations,” Transactions of the American Mathematical Society, vol. 59 (1946), pp. 524–555.

    Article  Google Scholar 

  2. A. A. Albert, “A structure theory for Jordan algebras,” Annals of Mathematics, vol. 48 (1947), pp. 546–567.

    Article  Google Scholar 

  3. G. Birkhoff and P. Whitman, “Representation of Jordan on Lie algebras,” to appear in the Transactions of the American Mathematical Society.

    Google Scholar 

  4. R. Brauer and H. Weyl, “Spinors in n dimensions,” American Journal of Mathematics, vol. 57 (1935), pp. 425–449.

    Article  Google Scholar 

  5. E. Cartan, “Les groupes projectifs qui ne laissent invariante aucune multiplicité plan,” Bulletin de la Société Mathematique de France, vol. 41 (1913), pp. 53–96.

    Google Scholar 

  6. R. J. Duffin, “On the characteristic matrices of covariant systems,” Physical Review, vol. 54 (1938), p. 1114.

    Article  Google Scholar 

  7. N. Jacobson and F. D. Jacobson, “Structure and representation of semi-simple Jordan algebras,” to appear in the Transactions of the American Mathematical Society.

    Google Scholar 

  8. P. Jordan, “Über die Multiplikation quanten-mechanischer Grössen,” Zeitschrift fur Physik, vol. 80 (1933), pp. 285–291.

    Article  Google Scholar 

  9. P. Jordan, J. v. Neumann and E. Wigner, “On an algebraic generalization of the quantum mechanical formation,” Annals of Mathematics, vol. 35 (1934), pp. 29–64.

    Article  Google Scholar 

  10. N. Kemmer, “Particle aspect of meson theory,” Proceedings of the Royal Society, vol. 173 (1939), pp. 91–116.

    Article  Google Scholar 

  11. N. Kemmer, “The algebra of meson matrices,” Proceedings of the Cambridge Philosophical Society, vol. 39 (1943), pp. 189–196.

    Article  Google Scholar 

  12. H. A. Kramers, F. J. Belinfante and J. K. Lubanski, “Über freie Teilchen mit nicht verschwindender Masse und beliebiger Spinquantinzahl,” Physica 8, vol. 8 (1941), pp. 597–627.

    Google Scholar 

  13. D. E. Littlewood, “An equation of quantum mechanics,” Proceedings of the Cambridge Philosophical Society, vol. 43 (1947), pp. 406–413.

    Article  Google Scholar 

  14. J. K. Lubanski, “Sur la theorie des particules elementaire de spin quelconque,” I and II, Physica 9 (1942), pp. 310–324 and 325–338.

    Article  Google Scholar 

  15. N. Svartholm, “On the algebras of relativistic quantum theories,” Proceedings of the Royal Phisiographical Society of Lund, vol. 12 (1942), pp. 94–108.

    Google Scholar 

  16. H. Weyl, “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen,” I, II and III, Mathematische Zeitschrift, vols. 23–24 (1925–1926), pp. 271–304,

    Article  Google Scholar 

  17. H. Weyl, “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen,” I, II and III, Mathematische Zeitschrift, vols. 23–24 (1925–1926), pp. 328–376,

    Google Scholar 

  18. H. Weyl, “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen,” I, II and III, Mathematische Zeitschrift, vols. 23–24 (1925–1926), pp. 377–395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Boston

About this chapter

Cite this chapter

Jacobson, N. (1989). Lie and Jordan Triple Systems. In: Nathan Jacobson Collected Mathematical Papers. Contemporary Mathematicians. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3694-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3694-8_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8215-0

  • Online ISBN: 978-1-4612-3694-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics