Theoretical and Experimental Analysis of Hematocrit Distribution in Microcirculatory Networks

  • Timothy W. Secomb
  • Axel R. Pries
  • Peter Gaehtgens
  • Joseph F. Gross


Many investigators have reported that capillary hematocrits in a variety of tissues are substantially lower than corresponding systemic hematocrits (Johnson, 1971; Klitzman and Duling, 1979; Lipowsky et al., 1980). Part of this apparent discrepancy is due to the Fahraeus effect in individual segments (Fahraeus, 1928), tube hematocrit (volume fraction of red cells within a vessel) being lower than discharge hematocrit (volume fraction of red cells in blood flowing through a vessel). However, in vitro measurements and theoretical arguments indicate that this effect alone is not sufficient to explain the observed hematocrit reduction.


Apparent Viscosity Microvascular Network Segment Flow Daughter Branch Discharge Hematocrit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chien S, Usami S, Skalak, R (1984) Blood flow in small tubes. In Renkin EM, Michel CC (eds) Handbook of Physiology, Sec 2, The Cardiovascular System. Vol IV, Pt 1. American Physiological Society, Bethesda, MD, pp 217–249.Google Scholar
  2. Conte SD, de Boor C (1981) Elementary Numerical Analysis. McGraw-Hill, New York.Google Scholar
  3. Desjardins C, Duling BR (1987) Microvessel hematocrit: Measurement and implications for capillary oxygen transport. Am J Physiol 252: H494–H503.Google Scholar
  4. Fahraeus R (1928) Die Strömungsverhältnisse und die Verteilung der Blutzellen im Gefässsystem. Klin Wochenschr 7: 100–106.CrossRefGoogle Scholar
  5. Johnson PC (1971) Red cell separation in the mesenteric capillary network. Am J Physiol 221: 99–104.Google Scholar
  6. Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 237: H481–H490.Google Scholar
  7. Ley K, Pries AR, Gaehtgens P, (1986) Topological structure of rat mesenteric microvessel networks. Microvasc Res 32: 315–332.CrossRefGoogle Scholar
  8. Lipowsky HH, Usami S, Chien S (1980) In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat. Microvasc Res 19: 297–319.CrossRefGoogle Scholar
  9. Papenfuss H-D, Gross JF (1986) Mathematical simulation of blood flow in microcirculatory networks. In Popel AS, Johnson PC (eds) Microvascular Networks: Experimental and Theoretical Studies. Karger, Basel.Google Scholar
  10. Pries AR, Kanzow G, Gaehtgens P (1983) Microphotometric determination of hematocrit in small vessels. Am J Physiol 245: H167–H177.Google Scholar
  11. Pries AR, Ley K, Gaehtgens P (1986) Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 251: H1324–H1332.Google Scholar
  12. Pries AR, Ley K, Classen M, Gaehtgens P (submitted for publication) Red cell distribution at microvascular bifurcations. Microvasc Res.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Timothy W. Secomb
  • Axel R. Pries
  • Peter Gaehtgens
  • Joseph F. Gross

There are no affiliations available

Personalised recommendations