Skip to main content

Estimation of Stage—Specific Demographic Parameters for Zooplankton Populations: Methods Based on Stage—Classified Matrix Projection Models

  • Conference paper
Estimation and Analysis of Insect Populations

Part of the book series: Lecture Notes in Statistics ((LNS,volume 55))

Abstract

Our understanding of zooplankton dynamics is constrained by the difficulty of estimating stage-specific vital rates from field data. In this paper, we approach demographic estimation as an inverse problem, using stage-classified matrix projection models. We allow the vital rates to vary between stages and over time, and do not assume stable age distributions or that discrete cohorts can be identified. We obtain least-squares estimates of survival and growth probabilities, which can be obtained from as few as three consecutive censuses. However, the estimates are ill-conditioned in the presence of sampling noise. Two regularization methods, truncated singular value decomposition and Tikhonov regularization (ridge regression) are examined as possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksnes, D. L. 1986. Resource allocation in the study of copepod population dynamics. Ph.D. Thesis, University of Bergen, Bergen, Norway.

    Google Scholar 

  • Aksnes, D. L. & T. J. Hoisaeter. 1987. Obtaining life table data from stage—frequency distributional statistics. Limnol Oceanogr. 32: 514–517.

    Article  Google Scholar 

  • Albert, A. 1972. Regression and the Moore—Penrose pseudoinverse. Academic Press, New York.

    MATH  Google Scholar 

  • Bertero, M. 1986. Regularization methods for linear inverse problems, pp. 52–112 in G. Talenti [ed.] Inverse Problems. Springer—Verlag, New York.

    Chapter  Google Scholar 

  • Caswell, H. 1972. On instantaneous and finite birth rates. Limnol Oceanogr. 17: 787–791.

    Article  Google Scholar 

  • Caswell, H. 1978. A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor. Pop. Biol14: 215–230.

    Article  MathSciNet  Google Scholar 

  • Caswell, H. 1982. Stable population structure and reproductive value for populations with complex life cycles. Ecology63: 1223–1231.

    Article  Google Scholar 

  • Caswell, H. 1983. Phenotypic plasticity in life-history traits: demographic effects and evolutionary consequences. Amer. Zool23: 35–46.

    Google Scholar 

  • Caswell, H. 1985. The evolutionary demography of clonal organisms. In L. Buss, J. B. C. Jackson and R. Cook [eds.]. The Population Biology of Clonal Organisms. Yale Univ. Press, New Haven.

    Google Scholar 

  • Caswell, H. 1986. Life cycle models for plants. Led. Math. Life Sci.18: 171–223.

    MathSciNet  Google Scholar 

  • Caswell, H. 1986. Life cycle models for plants. Led. Math. Life Sci.18: 171–223.

    MathSciNet  Google Scholar 

  • Edmondson, W. T. 1960. Reproductive rates of rotifers in natural populations. Mem. 1st. Ital Idrobiol12: 21–77.

    Google Scholar 

  • Gabriel, W., B. E. Taylor & S. Kirsch-Prokosch. 1987. Cladoceran birth and death rates estimates: experimental comparisons of egg-ratio methods. Freshwat. Biol18: 361–372.

    Article  Google Scholar 

  • Gehrs, C. W. & A. Robertson. 1975. Use of life tables in analyzing the dynamics of copepod populations. Ecology56: 665–672.

    Article  Google Scholar 

  • Golub, G. H., M. Heath, & G. Wahba. 1979. Generalized cross—validation as a method for choosing a good ridge parameter. Technometrics21: 215–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Hairston, N. G., Jr. & S. Twombly. 1985. Obtaining life table data from cohort analyses: a critique of current methods. Limnol Oceanogr. 30: 886–893.

    Article  Google Scholar 

  • Hairston, N. G., Jr., M. Braner & S. Twombly. 1987. Perspective on prospective methods for obtaining life table data. Limnol Oceanogr. 32: 517–520.

    Article  Google Scholar 

  • Hoerl, A. E. & R. W. Kennard. 1970a. Ridge regression: biased estimation for nonorthogonal problems. Technometrics12: 55–67.

    Article  MATH  Google Scholar 

  • Hoerl, A. E. k R. W. Kennard. 1970b. Ridge regression: applications to nonorthogonal problems. Technometrics12: 69–82.

    Article  MATH  Google Scholar 

  • Keller, J. B. 1976. Inverse problems. Amer. Math. Monthly83: 107–118.

    Article  MathSciNet  Google Scholar 

  • Lande, R. 1982. A quantitative genetic theory of life history evolution. Ecol. 63: 607–615.

    Article  Google Scholar 

  • Law, R. 1983. A model for the dynamics of plant populations containing individuals classified by age and size. Ecology64: 224–230.

    Article  Google Scholar 

  • Lefkovitch, L. P. 1964. Estimating the Malthusian parameter from census data. Nature204: 810.

    Article  Google Scholar 

  • Lefkovitch, L. P. 1965. The study of population growth in organisms grouped by stages. Biometrics21: 1–18.

    Article  Google Scholar 

  • Paloheimo, J. E. 1974. Calculation of instantaneous birth rate. Limnol Oceanogr. 19: 692–694.

    Article  Google Scholar 

  • Rigler, F. H. & J. M. Cooley. 1974. The use of field data to derive population statistics of multivoltine copepods. Limnol. Oceanogr.19: 636–655.

    Article  Google Scholar 

  • Sharpe, P. J. H., G. L. Curry, D. W. DeMichele & C. L. Cole. 1977. Distribution model of organism development times. J. Theor. Biol.66: 21–38.

    Article  Google Scholar 

  • Taylor, B. E. & M. Slatkin. 1981. Estimating birth and death rates of zooplankton. Limnol Oceanogr. 26: 143–158.

    Article  Google Scholar 

  • Threlkeld, S. T. 1979a. Estimating cladoceran birth rates: the importance of egg mortality and the egg age distribution. Limnol. Oceanogr.24: 601–612.

    Article  Google Scholar 

  • Tikhonov, A. N. 1965. Ill—posed problems of linear algebra and a stable method of solving them. Doklady Akad. Nauk USSR 163: 6.

    Google Scholar 

  • Tikhonov, A. N. & V. Y. Arsenin. 1977. Solutions of ill—posed problems. V. H. Winston and Sons, Washington, D.C.

    MATH  Google Scholar 

  • Wahba, G. 1977. The approximate solution of linear operator equations when the data are noisy. SIAM J. Num. Anal.14: 651–667.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caswell, H., Twombly, S. (1989). Estimation of Stage—Specific Demographic Parameters for Zooplankton Populations: Methods Based on Stage—Classified Matrix Projection Models. In: McDonald, L.L., Manly, B.F.J., Lockwood, J.A., Logan, J.A. (eds) Estimation and Analysis of Insect Populations. Lecture Notes in Statistics, vol 55. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3664-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3664-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96998-5

  • Online ISBN: 978-1-4612-3664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics