Advertisement

Calibration of Biased Sampling Procedures

  • Lyman L. McDonald
  • Bryan F. J. Manly
Part of the Lecture Notes in Statistics book series (LNS, volume 55)

Abstract

Sampling without a well defined frame potentially leads to biased inferences. We consider procedures developed for estimation of selection functions in the study of natural selection and procedures for correction of size-biased samples to give a general theory for correction of biased samples. Applications are made to the correction of selection bias in samples of insects collected by trapping.

Keywords

Selection Function Unbiased Estimator Selection Coefficient Unbiased Sample Sampling Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cain, A. J. & J. D. Currey. 1968. Studies on CepaeaIII. Ecogenetics of a population of Cepaea nemoralis(L.) subject to strong area effects. Phil Trans. Roy. Soc. Lond. B, 253: 447 – 482CrossRefGoogle Scholar
  2. Cochran, W. G. 1977. Sampling Techniques. Wiley, New York.MATHGoogle Scholar
  3. Cox, D. R. 1969. Some sampling problems in technology, pp. 506–527. InNew Developments in Survey Sampling. [eds.J N. L. Johnson and H. Smith. Wiley—Interscience, New York.Google Scholar
  4. Davy, P. J. & R. E. Miles. 1977. Sampling theory for opaque spatial specimens. J. Roy. Statist Soc. B, 39: 56 – 65.MathSciNetMATHGoogle Scholar
  5. Glasgow, J. P. 1961. Selection for size in tsetse flies. J. Anim. Ecol.30: 87 – 94.CrossRefGoogle Scholar
  6. Grosenbaugh, L. R. 1952. Plotless timber estimates — new, fast, easy. J. Forestry50: 32 – 37.Google Scholar
  7. Hanurav, T. V. 1962. Some sampling schemes in probability sampling. SanJchya A. 24: 421 – 428.MathSciNetMATHGoogle Scholar
  8. Horvitz, D. G. & D. J. Thompson. 1952. A generalization of sampling without replacement from a finite universe. J. Amer. Statist Assoc.47: 663 – 685.MathSciNetMATHCrossRefGoogle Scholar
  9. Kaiser, L. 1983. Unbiased estimation in line-intercept sampling. Biometrics39: 965 – 976.MATHCrossRefGoogle Scholar
  10. Manly, B. F. J. 1977. The estimation of the fitness function from several samples taken from a population. Biom. J.19: 391 – 401.MATHCrossRefGoogle Scholar
  11. Manly, B. F. J. 1985. The Statistics of Natural Selection. Chapman and Hall, London.Google Scholar
  12. McDonald, L. L. 1980. Line—intercept sampling for attributes other than coverage and density. J. WML Mgt.44: 530 – 533.CrossRefGoogle Scholar
  13. McDonald, L. L., M. A Evans, D. L. Otis & E. Becker. 1987. Encounter sampling of fisherman, campers and other wild animals. Technical Report, Department of Statistics, University of Wyoming, Laramie, Wyoming.Google Scholar
  14. Southwood, T. R. E. 1978. Ecological Methods. Chapman and Hall, London.CrossRefGoogle Scholar
  15. Weible, E. R. 1980. Stereological Methods: Vol. 2 Theoretical Foundations. Academic Press, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Lyman L. McDonald
    • 1
  • Bryan F. J. Manly
    • 2
  1. 1.Departments of Zoology and StatisticsUniversity of WyomingLaramieUSA
  2. 2.Department of Mathematics and StatisticsUniversity of OtagoDunedinNew Zealand

Personalised recommendations