The first type of plant hormone to be discovered was the auxins. The term “auxin” is derived from the Greek “auxein” which means “to grow,” and was proposed originally by Kögl and Haagen-Smit and by F. A. F. C. Went to designate a particular substance that had the property of promoting curvature in the Avena Coleoptile Curvature Test, which will be described later.


Auxin Transport Polar Auxin Transport Auxin Biosynthesis Auxin Action Plant Growth Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthon, G. E. and R. M. Spanswick. 1986. Purification and properties of the H+-translocating ATPase from the plasma membrane of tomato roots. Plant Physiol. 81: 1080–1085.PubMedGoogle Scholar
  2. Ashton, F. M. and A. S. Crafts. 1973. Mode of Action of Herbicides. John Wiley & Sons, New York.Google Scholar
  3. Audus, L. J. 1972. Plant Growth Substances. Vol. 1. Chemistry and Physiology. Leonard Hill Books, London.Google Scholar
  4. Bailey, H. M., E. J. D. Barker, K. R. Libbenga, P. C. G. Van der Linde, A. M. Mennes, and M. C. Elliott. 1985. An auxin receptor in plant cells. Biol. Plant. 27: 105–109.Google Scholar
  5. Bandurski, R. S. 1980. Homeostatic control of concentrations of indole-3-acetic acid. In: Skoog, F., ed. Plant Growth Substances 1979. Springer-Verlag, Berlin, Heidelberg, New York. Pp.37–49.Google Scholar
  6. Bandurski, R. S. and A. Schulze. 1974. Concentrations of indole-3-acetic acid and its esters in Avena and Zea. Plant Physiol. 54: 257–262.PubMedGoogle Scholar
  7. Bandurski, R. S., A. Schulze, P. Dayanandan, and P. B. Kaufman. 1984. Response to gravity by Zea mays seedlings. I. Time course of the response. Plant Physiol. 74: 284–288.PubMedGoogle Scholar
  8. Bandurski, R. S., A. Schulze, and D. M. Reincke. 1986. Biosynthetic and metabolic aspects of auxins. In: Bopp, M., ed. Plant Growth Substances 1985. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo. Pp.83–91.Google Scholar
  9. Beyer, E. M., Jr. 1972. Auxin transport: A new synthetic inhibitor. Plant Physiol. 50: 322–327.PubMedGoogle Scholar
  10. Bonner, J. 1934. The relation of hydrogen ions to the growth rate of the Avena coleoptile. Protoplasma 21: 406–423.Google Scholar
  11. Bonner, J. 1961. On the mechanics of auxin-induced growth. In: Plant Growth Regulation. Iowa State University Press, Ames. Pp. 307–328.Google Scholar
  12. Bonner, J. and A. W. Galston. 1952. Principles of Plant Physiology. W. H. Freeman and Company, San Francisco.Google Scholar
  13. Bower, P. J., H. M. Brown, and W. K. Purves. 1978. Cucumber seedling indoleacetaldehyde oxidase. Plant Physiol. 61: 107–110.PubMedGoogle Scholar
  14. Chang, Y. P. and W. P. Jacobs. 1972. The contrast between active transport and diffusion of indole-3-acetic acid in Coleus petioles. Plant Physiol. 50: 635–639.PubMedGoogle Scholar
  15. Chisnell, J. R. 1984. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue. Plant Physiol. 74: 278–283.PubMedGoogle Scholar
  16. Chisnell, J. R. and R. S. Bandurski. 1988. Translocation of radio-labeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L. Plant Physiol. 86: 79–84.PubMedGoogle Scholar
  17. Cleland, R. 1971. Cell wall extension. Annu. Rev. Plant Physiol. 22: 197–222.Google Scholar
  18. Cleland, R. E. 1987. Auxin and cell elongation. In: Davies, P. J., ed. Plant Hormones and Their Role in Plant Growth and Development. Martinus Nijhoff Publishers, Dordrecht, The Netherlands. Pp. 132–148.Google Scholar
  19. Cleland, R. E. 1976. Kinetics of hormone-induced H+ excretion. Plant Physiol. 58: 210–213.PubMedGoogle Scholar
  20. Cohen, J. D. 1982. Identification and quantitative analysis of indole-3-acetyl-l-aspartate from seeds of Glycine max L. Plant Physiol. 70: 749–753.PubMedGoogle Scholar
  21. Corcuera, L. J. and R. S. Bandurski. 1982. Biosynthesis of indol-3-yl-acetyl-myo-inositol arabinoside in kernels of Zea mays L. Plant Physiol. 70: 1664–1666.PubMedGoogle Scholar
  22. Cosgrove, D. J. 1981. Analysis of the dynamic and steady-state responses of growth rate and turgor pressure to changes in cell parameters. Plant Physiol. 68: 1439–1446.PubMedGoogle Scholar
  23. Darwin, C. 1880. The Power of Movements in Plants. D. Appleton and Company, New York.Google Scholar
  24. Davidonis, G. H., R. H. Hamilton, and R. O. Mumma. 1980. Metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) in soybean root callus. Evidence for the conversion of 2,4-D amino acid conjugates to free 2,4-D. Plant Physiol. 66: 537–540.PubMedGoogle Scholar
  25. Davidonis, G. H., R. H. Hamilton, R. P. Vallejo, R. Buly, and R. O. Mumma. 1982. Biological properties of d-amino conjugates of 2,4-D. Plant Physiol. 70: 357–360.PubMedGoogle Scholar
  26. Davies, P. J. 1973. Current theories on the mode of action of auxin. Bot. Rev. 39: 139–171.Google Scholar
  27. dela Fuente, R. K. and A. C. Leopold. 1966. Kinetics of polar auxin transport. Plant Physiol. 41: 1481–1484.PubMedGoogle Scholar
  28. dela Fuente, R. K. and A. C. Leopold. 1972. Two components of auxin transport. Plant Physiol. 50: 491–495.PubMedGoogle Scholar
  29. Epstein, E., B. G. Baldi, and J. D. Cohen. 1986. Identification of indole-3-acetylglutamate from seeds of Glycine max L. Plant Physiol. 80: 256–258.PubMedGoogle Scholar
  30. Epstein, E., J. D. Cohen, and R. S. Bandurski. 1980. Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiol. 65: 415–421.PubMedGoogle Scholar
  31. Epstein, E., O. Sagee, J. D. Cohen, and J. Garty. 1986. Endogenous auxin and ethylene in the lichen Ramalina duriaei. Plant Physiol. 82: 1122–1125.PubMedGoogle Scholar
  32. Erdmann, N. and U. Schiewer. 1971. Tryptophan dependent indoleacetic-acid biosynthesis from indole, demonstrated by double-labelling experiments. Planta 91: 135–141.Google Scholar
  33. Evans, M. L. 1974. Rapid responses to plant hormones. Annu. Rev. Plant Physiol. 25: 195–223.Google Scholar
  34. Evans, M. L. 1985. The action of auxin on plant cell elongation. Crit. Rev. Plant Sci. 2: 317–365.PubMedGoogle Scholar
  35. Evans, M. L. and P. M. Ray. 1969. Timing of the auxin response in coleoptiles and its implications regarding auxin action. J. Gen. Physiol. 53: 1–20.PubMedGoogle Scholar
  36. Feldman, L. J. and W. R. Briggs. 1987. Light-regulated gravitropism in seedling roots of maize. Plant Physiol. 83: 241–243.PubMedGoogle Scholar
  37. Gabathuler, R. and R. E. Cleland. 1985. Auxin regulation of a proton translocating ATPase in pea root plasma membrane vesicles. Plant Physiol. 79: 1080–1085.PubMedGoogle Scholar
  38. Galston, A. W. 1967. Regulatory systems in higher plants. Am. Scientist 55: 144–160.Google Scholar
  39. Galston, A. W. and P. J. Davies. 1970. Control Mechanisms in Plant Development. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  40. Goldsmith, M. H. M. 1968. The transport of auxin. Annu. Rev. Plant Physiol. 19: 347–360.Google Scholar
  41. Goldsmith, M. H. M. 1977. The polar transport of auxin. Annu.Rev. Plant Physiol. 28: 439–478.Google Scholar
  42. Gordon, S. A. 1961. The biogenesis of auxin. In: Ruhland, W., ed. Handbuch der Pflanzenphysiologie. Vol. XIV. Springer-Verlag, Berlin. Pp. 620–646.Google Scholar
  43. Gove, J. P. and M. C. Hoyle. 1975. The isozymic similarity of indoleacetic acid oxidase to peroxidase in birch and horseradish. Plant Physiol. 56: 684–687.PubMedGoogle Scholar
  44. Guilfoyle, T. J., C. Y. Lin, Y. M. Chien, R. T. Nagao, and J. L. Key. 1975. Enhancement of soybean RNA polymerase I by auxin. Proc. Natl. Acad. Sci. U.S.A. 72: 69–72.PubMedGoogle Scholar
  45. Haagen-Smith, A. J., W. B. Dandliker, S. H. Wittwer, and A. E. Murneek. 1946. Isolation of 3-indoleacetic acid from immature corn kernels. Am. J. Bot. 33: 118–120.Google Scholar
  46. Hagen, G. 1987. The control of gene expression by auxin. In: Davies, P. J., ed. Plant Hormones and Their Role in Plant Growth and Development. Martinus Nijhoff Publishers, Dordrecht, The Netherlands. Pp. 149–163.Google Scholar
  47. Hagen, G. and T. J. Guilfoyle. 1985. Rapid induction of selective transcription by auxins. Mol. Cell Biol. 5: 1197–1203.PubMedGoogle Scholar
  48. Hager, A., H. Menzel, and A. Krauss. 1971. Versuche and Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100: 47–75.Google Scholar
  49. Hangarter, R. P. and N. E. Good. 1981. Evidence that IAA conjugates are slow-release sources of free IAA in plant tissues. Plant Physiol. 68: 1424–1427.PubMedGoogle Scholar
  50. Hardin, J. W., J. H. Cherry, D. J. Morré, and C. A. Lembi. 1972. Enhancement of RNA polymerase activity by a factor released by auxin from plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 69: 3146–3150.PubMedGoogle Scholar
  51. Harrison, M. A. and P. B. Kaufman. 1980. Hormonal regulation of lateral bud (tiller) release in oats (Avena sativa L.). Plant Physiol. 66: 1123–1127.PubMedGoogle Scholar
  52. Hasenstein, K.-H. and M. L. Evans. 1986. Calcium dependence of rapid auxin action in maize roots. Plant Physiol. 81: 439–443.PubMedGoogle Scholar
  53. Hasenstein, K.-H. and D. Rayle. 1984. Cell wall pH and auxin transport velocity. Plant Physiol. 16: 65–67.Google Scholar
  54. Hatfield, R. D. and C. E. LaMotte. 1985. Gravitropic responses of partially decapitated corn coleoptiles with and without applied [14C]indoleacetic acid. Plant Physiol. 11: 475–480.Google Scholar
  55. Hertel, R. 1986. Two comments on auxin transport: The uptake/efflux-mechanism and the problem of adaptation. In Bopp, M., ed. Plant Growth Substances 1985. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo. Pp. 214–217.Google Scholar
  56. Hinman, R. L. and J. Lang. 1965. Peroxidase-catalyzed oxidation of indole-3-acetic acid. Biochemistry 4: 144–158.PubMedGoogle Scholar
  57. Iino, M. and D. J. Carr. 1982. Sources of free IAA in the mesocotyl of etiolated maize seedlings. Plant Physiol. 69: 1109–1112.PubMedGoogle Scholar
  58. Jacobs, M. and S. F. Gilbert. 1983. Basal localization of the presumptive auxin transport carrier in pea stem cells. Science 220: 1297–1300.PubMedGoogle Scholar
  59. Jacobs, W. P., K. Falkenstein, and R. H. Hamilton. 1985. Nature and amount of auxin in algae. IAA from extracts of Caulerpa paspaloides (Siphonales). Plant Physiol. 78: 844–848.PubMedGoogle Scholar
  60. Kasamo, K. 1986. Purification and properties of the plasma membrane H+-translocating adenosine triphosphatase of Phaseolus mungo L. Plant Physiol. 80: 818–824.PubMedGoogle Scholar
  61. Kateckar, G. F. and A. E. Geissler. 1980. Auxin transport inhibitors. IV. Evidence of a common mode of action for a proposed class of auxin transport inhibitors: The phytotropins. Plant Physiol. 66: 1190–1195.Google Scholar
  62. Keegstra, K., K. W. Talmadge, W. D. Bauer, and P. Albersheim. 1973. The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51: 188–196.PubMedGoogle Scholar
  63. Kende, H. and G. Gardner. 1976. Hormone binding in plants. Annu. Rev. Plant Physiol. 27: 267–290.Google Scholar
  64. Key, J. L. 1969. Hormones and nucleic acid metabolism. Annu. Rev. Plant Physiol. 20: 449–474.Google Scholar
  65. Key, J. L., N. M. Barnett, and C. Y. Lin. 1967. RNA and protein biosynthesis and the regulation of cell elongation by auxin. Ann. New York Acad. Sci. 144: 49–62.Google Scholar
  66. Kogl, F. and A. J. Haagen-Smit. 1931. Über die Chemie des Wuchsstoffs. K. Akad. Wetenschap. Amsterdam. Proc. Sect. Sci. 34: 1411–1416.Google Scholar
  67. Krul, W. R. 1972. Polar indole-3-acetic acid diffusion in nonliving and model systems. Plant Physiol. 50: 784–787.PubMedGoogle Scholar
  68. Kutschera, U. and P. Schopfer. 1985. Evidence against the acid growth theory of auxin action. Planta 163: 483–493.Google Scholar
  69. Labarca, C., P. B. Nicholls, and R. S. Bandurski. 1966. A partial characterization of indoleacetylinositols from Zea mays. Biochem. Biophys. Res. Commun. 20: 641–646.Google Scholar
  70. Lamport, D. T. A. 1970. Cell wall metabolism. Annu. Rev. Plant Physiol. 21: 235–270.Google Scholar
  71. Larsen, P. 1951. Formation, occurrence, and inactivation of growth substances. Annu. Rev. Plant Physiol. 2: 169–198.Google Scholar
  72. Lee, J. S. and M. L. Evans. 1985. Polar transport of auxin across gravistimulated roots of maize and its enhancement by calcium. Plant Physiol. 77: 824–827.PubMedGoogle Scholar
  73. Leopold, A. C. 1955. Auxins and Plant Growth. University of California Press, Berkeley and Los Angeles.Google Scholar
  74. Leopold, A. C. and O. F. Hall. 1966. Mathematical model of polar auxin transport. Plant Physiol. 41: 1476–1480.PubMedGoogle Scholar
  75. Leopold, A. C. and P. E. Kriedemann. 1975. Plant Growth and Development. 2nd ed. McGraw-Hill Book Company, New York.Google Scholar
  76. Libbenga, K. R. and A. M. Mennes. 1987. Hormone binding and its role in hormone action. In: Davies, P. J., ed. Plant Hormones and Their Role in Plant Growth and Development. Martinus Nijoff Publishers, Dordrecht, The Netherlands. Pp. 194–221.Google Scholar
  77. Libbert, E., S. Wichner, U. Schiewer, H. Risch, and W. Kaiser. 1966. The influence of epiphytic bacteria on auxin metabolism. Planta 68: 327–334.Google Scholar
  78. Löbler, M. and D. Klämbt. 1985. Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). II. Localization of a putative receptor. J. Biol. Chem. 260: 9854–9859.PubMedGoogle Scholar
  79. Lomax, T. L. 1986. Active auxin uptake by specific plasma membrane carriers. In: Bopp, M., ed. Plant Growth Substances 1985. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo. Pp. 209–213.Google Scholar
  80. MacDonald, I. R. and J. W. Hart. 1987. New light on the Cholodny-Went Theory. Plant Physiol. 84: 568–570.PubMedGoogle Scholar
  81. Marré, E., P. Lado, F. Rasi-Caldogno, R. Colombo, M. Cocucci, and M. I. DeMichelis. 1975. Regulation of proton extrusion by plant hormones and cell elongation. Physiol. Vég. 13: 797–811.Google Scholar
  82. Masuda, Y. 1969. Auxin-induced cell expansion in relation to cell wall extensibility. Plant Cell Physiol. 10: 1–9.Google Scholar
  83. Matheron, M. E. and T. C. Moore. 1973. Properties of an aminotransferase of pea (Pisum sativum L.). Plant Physiol. 52: 63–67.PubMedGoogle Scholar
  84. Matthysse, A. G. and C. Phillips. 1969. A protein intermediary in the interaction of a hormone with the genome. Proc. Natl. Acad. Sci. U.S.A. 63: 897–903.PubMedGoogle Scholar
  85. Migliaccio, F. and D. L. Rayle. 1984. Sequence of key events in shoot gravitropism. Plant Physiol. 75: 78–81.PubMedGoogle Scholar
  86. Miura, G. A. and S. E. Mills. 1971. The conversion of d-tryptophan to l-tryptophan in cell cultures of tobacco. Plant Physiol. 47: 483–487.PubMedGoogle Scholar
  87. Moore, T. C. 1969. Comparative net biosynthesis of indoleacetic acid from tryptophan in cell-free extracts of different parts of Pisum sativum plants. Phytochemistry 8: 1109–1120.Google Scholar
  88. Moore, T. C. and C. A. Shaner. 1967. Biosynthesis of indoleacetic acid from tryptophan-14C in cell-free extracts of pea shoot tips. Plant Physiol. 42: 1787–1796.PubMedGoogle Scholar
  89. Moore, T. C. and C. A. Shaner. 1968. Synthesis of indoleacetic acid via indolepyruvic acid in cell-free extracts of pea seedlings. Arch. Biochem. Biophys. 127: 613–621.Google Scholar
  90. Morré, D.J. and J. H. Cherry. 1977. Auxin hormone-plasma membrane interactions. In: Pilet, P. E., ed. Plant Growth Regulation. Springer-Verlag, New York. Pp. 35–43.Google Scholar
  91. Murray, A. K. and R. S. Bandurski. 1975. Correlative studies of cell wall enzymes and growth. Plant Physiol. 56: 143–147.PubMedGoogle Scholar
  92. Nelson, N. 1988. Structure, function, and evolution of proton-ATPases. Plant Physiol. 86: 1–3.PubMedGoogle Scholar
  93. Newman, I. A. 1963. Electric potentials and auxin translocation in Avena. Aust. J. Biol. Sci. 16: 629–646.Google Scholar
  94. Newman, I. A. 1970. Auxin transport in Avena. I. Indoleacetic acid-14C distributions and speeds. Plant Physiol. 46: 263–272.PubMedGoogle Scholar
  95. Nishitani, K. and Y. Masuda. 1983. Auxin-induced changes in cell wall xyloglucans. Plant Cell Physiol. 24: 345–355.Google Scholar
  96. Nitsch, J. P. and C. Nitsch. 1956. Studies on the growth of coleoptile and first internode sections. A new, sensitive, straight-growth test for auxins. Plant Physiol. 31: 94–111.PubMedGoogle Scholar
  97. Nowacki, J. and R. S. Bandurski. 1980. Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiol. 65: 422–427.PubMedGoogle Scholar
  98. O’Brien, T. J., B. C. Jarvis, J. H. Cherry, and J. B. Hanson. 1968. Enhancement by 2,4-dichlorophenoxyacetic acid of chromatin RNA polymerase in soybean hypocotyl tissue. Biochim. Biophys. Acta 169: 35–43.PubMedGoogle Scholar
  99. Paleg, L. G. 1965. Physiological effects of gibberellins. Annu. Rev. Plant Physiol. 16: 291–322.Google Scholar
  100. Park, R. D. and C. K. Park. 1987. Oxidation of indole-3-acetic acid-amino acid conjugates by horseradish peroxidase. Plant Physiol. 84: 826–829.PubMedGoogle Scholar
  101. Percival, F. W. and R. S. Bandurski. 1976. Esters of indole-3-acetic acid from Avena seeds. Plant Physiol. 58: 60–67.PubMedGoogle Scholar
  102. Phillips, I. D. J. 1971. Introduction to the Biochemistry and Physiology of Plant Growth Hormones. McGraw-Hill Book Company, New York.Google Scholar
  103. Phillips. I. D. J. 1975. Apical dominance. Annu. Rev. Plant Physiol. 26: 341–367.Google Scholar
  104. Pilet, P.-E. and M. Saugy. 1987. Effect on root growth of endogenous and applied IAA and ABA. A critical reexamination. Plant Physiol. 83: 33–38.PubMedGoogle Scholar
  105. Pillay, I. and I. D. Railton. 1983. Complete release of axillary buds from apical dominance in intact, light-grown seedlings of Pisum sativum L. following a single application of cytokinin. Plant Physiol. 71: 972–974.PubMedGoogle Scholar
  106. Pless, T., M. Bottger, P. Hedden, and J. Graebe. 1984. Occurrence of 4-Cl-indoleacetic acid in broad beans and correlation of its levels with seed development. Plant Physiol. 74: 320–323.PubMedGoogle Scholar
  107. Price, C. A. 1970. Molecular Approaches to Plant Physiology. McGraw-Hill Book Company, New York.Google Scholar
  108. Rasi-Caldogno, F., M. I. DeMichelis, M. C. Pugliarello, and E. Marré. 1986. H+- pumping driven by the plasma membrane ATPase in membrane vesicles from radish: Stimulation by fusicoccin. Plant Physiol. 82: 212–125.Google Scholar
  109. Raven, J. A. 1975. Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol. 74: 163–172.Google Scholar
  110. Ray, P. M. 1958. Destruction of auxin. Annu. Rev. Plant Physiol. 9: 81–118.Google Scholar
  111. Ray, P. M. 1960. The destruction of indoleacetic acid. III. Relationships between peroxidase action and indoleacetic acid oxidation. Arch. Biochem. Biophys. 87: 19–30.PubMedGoogle Scholar
  112. Ray, P. M. 1974. The biochemistry of the action of indoleacetic acid on plant growth. In: Runeckles, V. C., E. Sondheimer, and D. C. Walton, eds. The Chemistry and Biochemistry of Plant Hormones. Vol. 7. Recent Advances in Phytochemistry. Academic Press, New York, Pp. 93–122.Google Scholar
  113. Ray, P. M. 1977. Auxin-binding sites of maize coleoptiles are localized on membranes of the endoplasmic reticulum. Plant Physiol. 59: 594–599.PubMedGoogle Scholar
  114. Ray, P. M. 1985. Auxin and fusicoccin enhancement of β-glucan synthase in peas. An intracellular enzyme activity apparently modulated by proton extrusion. Plant Physiol. 78: 466–472.PubMedGoogle Scholar
  115. Ray, P. M. 1987. Involvement of macromolecule biosynthesis in auxin and fusicoccin enhancement of β-glucan synthase activity in pea. Plant Physiol. 85: 523–528.PubMedGoogle Scholar
  116. Ray, P. M., P. B. Green, and R. Cleland. 1972. Role of turgor in plant cell growth. Nature (London) 239: 163–164.Google Scholar
  117. Rayle, D. L. 1973. Auxin-induced hydrogen-ion secretion in Avena coleoptiles and its implications. Planta 114: 63–73.Google Scholar
  118. Rayle, D. L. and R. Cleland. 1970. Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 46: 250–253.PubMedGoogle Scholar
  119. Rayle, D. L. and R. Cleland. 1972. The in vitro acid-growth response: relation to in vivo growth responses and auxin action. Planta 104: 282–296.Google Scholar
  120. Rayle, D. L. and R. Cleland. 1977. Control of plant cell enlargement by hydrogen ions. In: Moscona, A. A. and A. Monroy, eds. Current Topics in Developmental Biology. Vol. 11. Pattern Development. Academic Press, New York. Pp.187–214.Google Scholar
  121. Rayle, D. L. and R. E. Cleland. 1980. Evidence that auxin-induced growth of soybean hypocotyls involves proton excretion. Plant Physiol. 66: 433–437.PubMedGoogle Scholar
  122. Rayle, D. L., M. L. Evans, and R. Hertel. 1970. Action of auxin on cell elongation. Proc. Natl. Acad. Sci. U.S.A. 65: 184–191.PubMedGoogle Scholar
  123. Rayle, D. L. and W. K. Purves. 1967a. Isolation and identification of indole-3-ethanol (tryptophol) from cucumber seedlings. Plant Physiol. 42: 520–524.PubMedGoogle Scholar
  124. Rayle, D. L. and W. K. Purves. 1967b. Conversion of indole-3-ethanol to indole-3 acetic acid in cucumber seedling shoots. Plant Physiol. 42: 1091–1093.PubMedGoogle Scholar
  125. Reinecke, D. M. and R. S. Bandurski. 1981. Metabolic conversion of 14C-indole-3-acetic acid to 14C-oxindole-3-acetic acid. Biochem. Biophys. Res. Commun. 103: 429–433.PubMedGoogle Scholar
  126. Reinecke, D. M. and R. S. Bandurski. 1983. Oxindole-3-acetic acid, an indole-3-acetic acid catabolite in Zea mays. Plant Physiol. 17: 211–213.Google Scholar
  127. Reinecke, D. M. and R. S. Bandurski. 1987. Auxin biosynthesis and metabolism. In: Davies, P. J., ed. Plant Hormones and Their Role in Plant Growth and Development. Martinus Nijhoff Publishers, Dordrecht, The Netherlands. Pp. 24–42.Google Scholar
  128. Reinecke, D. M. and R. S. Bandurski. 1988. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays. Plant Physiol. 86: 868–872.PubMedGoogle Scholar
  129. Rubery, P.H. 1981. Auxin receptors. Annu. Rev. Plant Physiol. 32: 569–596.Google Scholar
  130. Rubery P. H. 1987. Auxin transport. In: Davies, P. J., ed. Plant Hormones and Their Role in Plant Growth and Development. Martinus Nijhoff Publishers, Dordrecht, The Netherlands. Pp. 341–362.Google Scholar
  131. Rubery, P. H. and A. R. Sheldrake. 1974. Carrier-mediated auxin transport. Planta 118: 101–121.Google Scholar
  132. Salisbury, F. B. and C. W. Ross. 1985. Plant Physiology. 3rd ed. Wadsworth Publishing Company, Belmont, California.Google Scholar
  133. Schneider, A. and F. Wightman. 1974. Metabolism of auxin in higher plants. Annu. Rev. Plant Physiol. 25: 487–513.Google Scholar
  134. Schrank, A. R. 1951. Electrical polarity and auxins. In: Skoog, F., ed. Plant Growth Substances. University of Wisconsin Press, Madison. Pp. 123–140.Google Scholar
  135. Scott, T. K. 1972. Auxins and roots. Annu. Rev. Plant Physiol. 23: 235–258.Google Scholar
  136. Scott, T. K. and W. R. Briggs. 1960. Auxin relationships in the Alaska pea (Pisum sativum). Am. J. Bot. 47: 492–499.Google Scholar
  137. Scott, T. K. and W. R. Briggs. 1963. Recovery of native and applied auxin from the dark-grown ‘Alaska’ pea seedling. Am. J. Bot. 50: 652–657.Google Scholar
  138. Scott, T. K. and M. B. Wilkins. 1968. Auxin transport in roots, II. Polar flux of IAA in Zearoots. Planta 83: 323–334.Google Scholar
  139. Senn, A. P. and M. H. M. Goldsmith. 1988. Regulation of electrogenic proton pumping by auxin and fusicoccin as related to the growth of Avena coleoptiles. Plant Physiol. 88: 131–138.PubMedGoogle Scholar
  140. Sherwin, J. E. 1970. A tryptophan decarboxylase from cucumber seedlings. Plant Cell Physiol. 11: 865–872.Google Scholar
  141. Shinkle, J. R. and W. R. Briggs. 1984. Auxin concentration/growth relationship for Avena coleoptile sections from seedlings grown in complete darkness. Plant Physiol. 74: 335–339.PubMedGoogle Scholar
  142. Sonner, J. M. and W. K. Purves. 1985. Natural occurrence of indole-3-acetylaspartate and indole-3-acetylglutamate in cucumber shoot tissue. Plant Physiol. 77: 784–785.PubMedGoogle Scholar
  143. Spanswick, R. M. 1981. Electrogenic ion pumps. Annu. Rev. Plant. Physiol. 32: 267–289.Google Scholar
  144. Taiz, L. 1984. Plant cell expansion: regulation of cell wall mechanical properties. Annu. Rev. Plant Physiol. 35: 585–657.Google Scholar
  145. Talbott, L. D., P. M. Ray, and J. K. M. Roberts. 1988. Effect of indoleacetic acid- and fusicoccin-stimulated proton extrusion on internal pH of pea interaode cells. Plant Physiol. 87: 211–216.PubMedGoogle Scholar
  146. Talmadge, K. W., K. Keegstra. W. D. Bauer, and P. Albersheim. 1973. The structure of plant cell walls. I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides. Plant Physiol. 51: 158–173.PubMedGoogle Scholar
  147. Theologis, A., T. V. Huynh, and R. W. Davis. 1985. Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J. Mol. Biol. 183: 53–68.PubMedGoogle Scholar
  148. Theologis, A. and P. M. Ray. 1982. Changes in messenger RNAs under the influence of auxins. In: Wareing, P. F., ed. Plant Growth Substances 1982. Academic Press, London. Pp. 43–57.Google Scholar
  149. Thimann, K. V. 1934. Studies on the growth hormone of plants. VI. The distribution of the growth substance in plant tissues. J. Gen. Physiol. 18: 23–34.PubMedGoogle Scholar
  150. Thimann, K. V. 1937. On the nature of inhibitions caused by auxins. Am. J. Bot. 24: 407–412.Google Scholar
  151. Thimann, K. V. 1956. Studies on the growth and inhibition of isolated plant parts. V. The effects of cobalt and other metals. Am. J. Bot. 43: 241–250.Google Scholar
  152. Thimann, K. V. 1963. Plant growth substances; past, present and future. Annu. Rev. Plant Physiol. 14: 1–18.Google Scholar
  153. Thimann, K. V. 1969. The auxins. In: Wilkins, M. B., ed. The Physiology of Plant Growth and Development. McGraw-Hill Publishing Company Limited, London. Pp. 1–45.Google Scholar
  154. Thimann, K. V. 1977. Hormone Action in the Whole Life of Plants. University of Massachusetts Press, Amherst.Google Scholar
  155. Thimann, K. V. and F. Skoog. 1934. On the inhibition of bud development and other functions of growth substance in Vicia fava. Proc. Royal Soc., Ser. B., Biol. Sci. London 114: 317–339.Google Scholar
  156. Torrey, J. G. 1976. Root hormones and plant growth. Annu. Rev. Plant Physiol. 27: 435–459.Google Scholar
  157. Travis, R. L. and J. L. Key. 1976. Auxin-induced changes in the incorporation of 3H-amino acids into soybean ribosomal proteins. Plant Physiol. 57: 936–938.PubMedGoogle Scholar
  158. Tuli, V. and H. S. Moyed. 1967. Inhibitory oxidation products of indole-3-acetic acid: 3-hydroxymethyloxindole and 3-methyleneoxindole as plant metabolities. Plant Physiol. 42: 425–430.PubMedGoogle Scholar
  159. Ueda, M., A. Ehmann, and R. S. Bandurski. 1970. Gas-liquid chromatographic analysis of indole-3-acetic acid myoinositol esters in maize kernels. Plant Physiol. 46: 715–719.PubMedGoogle Scholar
  160. Vanderhoef, L. N. and R. R. Dute. 1981. Auxin-regulated wall loosening and sustained growth in elongation. Plant Physiol. 67: 146–149.PubMedGoogle Scholar
  161. Vanderhoef, L. N., J. S. Findley, J. J. Burke, and W. E. Blizzard. 1977. Auxin has no effect on modification of external pH by soybean hypocotyl cells. Plant Physiol. 59: 1000–1003.PubMedGoogle Scholar
  162. Vanderhoef, L. N., T. S. Lu, and C. A. Williams. 1977. Comparison of auxin-induced and acid-induced elongation in soybean hypocotyl. Plant Physiol. 59: 1004–1007.PubMedGoogle Scholar
  163. Varner, J. E. and D. T. Ho. 1976. Hormones. In: Bonner. J. and J. E. Varner, eds. Plant Biochemistry. 3rd ed. Academic Press, New York. Pp.713–770.Google Scholar
  164. Venis, M. A. 1972. Auxin-induced conjugation systems in peas. Plant Physiol. 49: 24–27.PubMedGoogle Scholar
  165. Venis, M. A. 1985. Hormone Binding in Plants. Longman Inc., New York, London.Google Scholar
  166. Verma, D. P. S., G. A. Maclachlan, H. Byrne, and D. Ewings. 1975. Regulation and in vitro translation of messenger ribonucleic acid for cellulase from auxin-treated pea epicotyls. J. Biol. Chem. 250: 1019–1026.PubMedGoogle Scholar
  167. Vickery, L. E. and W. K. Purves. 1972. Isolation of indole-3-ethanol oxidase from cucumber seedlings. Plant Physiol. 49: 716–721.PubMedGoogle Scholar
  168. Vijayaraghavan, S. J. and W. L. Pengelly. 1986. Bound auxin metabolism in cultured crown-gall tissues of tobacco. Plant Physiol. 80: 315–321.PubMedGoogle Scholar
  169. Walker, J. C., J. Legocka, L. Edelman, and J. L. Key. 1985. An analysis of growth regulator interactions and gene expression during auxin-induced cell elongation using cloned complementary DNAs to auxin-responsive messenger RNAs. Plant Physiol. 77: 847–850.PubMedGoogle Scholar
  170. Weaver, R. J. 1972. Plant Growth Substances in Agriculture. W. H. Freeman and Company, San Francisco.Google Scholar
  171. Went, F. W. 1928. Wuchstoff und Wachstum. Rec. Trav. Bot. Néer. 25: 1–116.Google Scholar
  172. Went, F. W. and K. V. Thimann. 1937. Phytohormones. Macmillan Company, New York.Google Scholar
  173. Wightman, F. and B. S. Rauthan. 1974. Evidence for the biosynthesis and natural occurrence of the auxin, phenylacetic acid, in shoots of higher plants. In: Plant Growth Substances 1973. Hirokawa Publishing Company, Tokyo. Pp. 15–27.Google Scholar
  174. Winter, A. 1966. A hypothetical route for the biogenesis of IAA. Planta 71: 229–239.Google Scholar
  175. Wright, L. Z. and D. L. Rayle. 1983. Evidence for a relationship between H+ excretion and auxin in shoot gravitropism. Plant Physiol. 72: 99–104.PubMedGoogle Scholar
  176. Zenk, M. H. and H. Scherf, 1963. d-Tryptophan in höheren Pflanzen. Biochim. Biophys. Acta 71: 737–738.Google Scholar
  177. Zurfluh, L. L. and T. J. Guilfoyle. 1982a. Auxin-induced changes in the population of translatable messenger RNA in elongating sections of soybean hypocotyl. Plant Physiol. 69: 332–337.PubMedGoogle Scholar
  178. Zurfluh, L. L. and T. J. Guilfoyle. 1982b. Auxin-and ethylene-induced changes in the population of translatable messenger RNA in basal sections and intact soybean hypocotyl. Plant Physiol. 69: 338–340.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Thomas C. Moore
    • 1
  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA

Personalised recommendations