Skip to main content

Extreme Values with Very Heavy Tails

  • Conference paper
Book cover Extreme Value Theory

Part of the book series: Lecture Notes in Statistics ((LNS,volume 51))

  • 500 Accesses

Abstract

Let X1,X2,… be a sequence of positive i.i.d.r.v.’s with So = 0, Sn = X1+X2+…+Xn (n=1,2,…) and let τt be the largest integer for which \({\operatorname{S} _{{{\tau _{t}}}}}\underline \leqslant \operatorname{t}\). Further let \({\operatorname{M} _{\operatorname{t} }}^{{\left( 1 \right)}}\underline \geqslant {\operatorname{M} _{t}}^{{\left( 2 \right)}}\underline \geqslant \cdots \underline \geqslant {\operatorname{M} _{t}}^{{\left( {{\tau _{t}} + 1} \right)}}\) be the torder statistics of the sequence \({X_1},{X_2},...,{X_\tau }_{_t},t - {S_\tau }_{_t}\) . The main result says that if IP(X1< x)=exp(-(logx)γ) (x≧1, 0< γ <1) then with proba-bility one for all t big enough \({\operatorname{t} ^{{ - 1}}}\left( {{\operatorname{M} _{t}}^{{\left( 1 \right)}} + {\operatorname{M} _{t}}^{{\left( 2 \right)}} + \cdots + {\operatorname{M} _{t}}^{{\left( \operatorname{r} \right)}}} \right)\underline \geqslant 1 - {\varepsilon _{t}}\)if \(\left( {\operatorname{r} - 2} \right)/\left( {\operatorname{r} - 1} \right)\underline \leqslant \gamma < \left( {\operatorname{r} - 1} \right)/\operatorname{r} ,{\varepsilon _{\operatorname{t} }}\underline \leqslant \exp \left( { - {{\left( {\log \operatorname{t} } \right)}^{\beta }}{{\left( {\log \log \operatorname{t} } \right)}^{{ - 3}}}} \right)\) and β=(r-1)/r-γ whenever (r-2)/(r-1) < γ <(r-1)/r.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.Csáki, P.Erdös and P.Révész (1985). On the length of longest excursion. Z.Wahrsch. Verw. Geb. 68, 365–382.

    Article  MATH  Google Scholar 

  2. D.A.Darling (1952). The influence of the maximum term in addition of independent random variables. Trans. Amer. Soc. 73, 95–107.

    Article  MathSciNet  MATH  Google Scholar 

  3. P.Révész and E.Willekens (1988). On the maximal distance between two renewal epochs. Stochastic Processes and their Applications.

    Google Scholar 

  4. W.E.Pruitt (1987). The contribution to the sum of the summand of maximum modulus. The Annals of Probability 15, 885–896.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Révész, P. (1989). Extreme Values with Very Heavy Tails. In: Hüsler, J., Reiss, RD. (eds) Extreme Value Theory. Lecture Notes in Statistics, vol 51. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3634-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3634-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96954-1

  • Online ISBN: 978-1-4612-3634-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics