Skip to main content

Best Attainable Rate of Joint Convergence of Extremes

  • Conference paper

Part of the book series: Lecture Notes in Statistics ((LNS,volume 51))

Abstract

Suppose that the underlying distribution function is ultimately continuous and strictly increasing. In this case the rate of joint convergence of the k largest order statistics, equally standardized, in a sample of n i.i.d. random variables is O(k/n), uniformly in k if, and only if, the underlying distribution function is ultimately a generalized Pareto distribution. Thus, generalized Pareto distributions yield the best rate of joint convergence of extremes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cohen, J.P. (1982), Convergence rates for the ultimate and penultimate approximation in extreme-value theory, Adv. in Appl. Probab. 14, 833–854.

    Article  MathSciNet  MATH  Google Scholar 

  • Dwass, M. (1966), Extremal processes II, Illinois J. Math. 10, 381–391.

    MathSciNet  MATH  Google Scholar 

  • Falk, M. (1985), “Uniform Convergence of Extreme Order Statistics,” Habilitationsschrift, Siegen.

    Google Scholar 

  • Falk, M. (1986), Rates of uniform convergence of extreme order statistics, Ann. Inst. Statist. Math. A 38, 245–262.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, R.A. and Tippett, L.H.C. (1928), Limiting forms of the frequence distribution of the largest or smallest member of a sample, Proc. Camb. Phil. Soc. 24, 180–190.

    Article  MATH  Google Scholar 

  • Galambos, J. (1987), “The Asymptotic Theory of Extreme Order Statistics,” 2nd. edition, Robert E. Krieger, Melbourne, Florida.

    Google Scholar 

  • Gnedenko, B. (1943), Sur la distribution limite du terme maximum d’une série aléatoire, Ann. Math. 44, 423–453.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, B.M. (1975), A simple approach to inference about the tail of a distribution, Ann. Statist. 3, 1163–1174.

    Article  MathSciNet  MATH  Google Scholar 

  • Hosking, J.R.M. and Wallis, J.R. (1987), Parameter and quantile estimation for the generalized Pareto distribution, Techometrics 29, 339–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Khintchine, A. (1938), Théorèmes limites pour 1.3s sommes des variables aléatoires indépendentes,Moscow (in Russian).

    Google Scholar 

  • Kohne, W. and Reiss, R.-D. (1983), A note on uniform approximation to distributions of extreme order statistics, Ann. Inst. Statist. Math. A 35, 343–345.

    Article  MathSciNet  MATH  Google Scholar 

  • Pickands, J. III (1975), Statistical inference using extreme order statistics, Ann. Statist 3, 119–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Pickands, J. III (1986), The continuous and differentiable domains of attraction of the extreme value distributions, Ann. Probab. 14, 996–1004.

    Article  MathSciNet  MATH  Google Scholar 

  • Reiss, R.-D. (1974), On the accuracy of the normal approximation for quantiles, Ann. Probab. 2, 741–744.

    Google Scholar 

  • Reiss, R.-D. (1981), Uniform approximation to distributions of extreme order statistics, Adv. in Appl. Probab. 13, 533–547.

    Google Scholar 

  • Reiss, R.-D. (1988), “Approximate Distributions of Order Statistics (with Applications to Non-parametric Statistics),” Springer Series in Statistics (to appear).

    Google Scholar 

  • Smith, R.L. (1982), Uniform rates of convergence in extreme-value theory, Adv. in Appl. Probab. 14, 600–622.

    Article  Google Scholar 

  • Smith, R.L. (1987), Estimating tails of probability distributions, Ann. Statist. 15, 1174–1207.

    Article  MathSciNet  MATH  Google Scholar 

  • Sweeting, T.J. (1987), On domains of uniform local attraction in extreme value theory, Ann. Probab. 13, 196–205.

    Article  MathSciNet  Google Scholar 

  • Weissman, I. (1975), Multivariate extremal processes generated by independent nonidentically distributed random variables, J. Appl. Probab. 12, 477–487.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Falk, M. (1989). Best Attainable Rate of Joint Convergence of Extremes. In: Hüsler, J., Reiss, RD. (eds) Extreme Value Theory. Lecture Notes in Statistics, vol 51. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3634-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3634-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96954-1

  • Online ISBN: 978-1-4612-3634-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics