Cell Wall of Candida albicans: Its Functions and Its Impact on the Host

  • Antonio Cassone
Part of the Current Topics in Medical Mycology book series (CT MYCOLOGY, volume 3)


The purpose of this chapter is to summarize and critically compare current ideas about the cell wall of Candida albicans, its functions in the microorganism, and its impact on the host. Candida albicans is an important human commensal that has received much attention as a model for studies of cell biology and microbial opportunism (164). This review deals mostly with the second aspect, as it is of great relevance for medical mycologists. Thus the role of cell wall components in morphogenesis, pathogencity, and immunity receives the focus here, although at times more basic questions concerning cell wall chemistry and organization of wall constituents are addressed, especially when the answers to these questions are pertinent to understanding the pathogenicity of the microorganism and the host response. Those who wish to know more about the basic aspects of cell biology and wall biosynthesis may consult a number of excellent reviews elsewhere (13,33,55,84,86,100,165,168,183,192,196,201,202,230). The growing interest in C. albicans and related pathogens has led to a dramatic increase in publications on Candida biopathology, and when writing this review selection was inevitably based on personal assessments and ideas.


Cell Wall Candida Albicans Germ Tube Yeast Cell Wall Chitin Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams AEM, Pringle JR: Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant of Saccharomyces cerevisiae. J Cell Biol 98: 934, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Doory Y, Baker CA: Comparative observations of ultrastructure of five species of Candida. Mycopathol Mycol Appl. 44: 355, 1971.PubMedCrossRefGoogle Scholar
  3. 3.
    Agar HD, Douglas HC: Studies of budding and cell wall structure of yeast. J Bacteriol 70: 427, 1954.Google Scholar
  4. 4.
    Agar HD, Douglas HC: Studies on the cytological structure of yeast: electron microscopy of thin sections. J Bacteriol 74: 365, 1956.Google Scholar
  5. 5.
    Akisada T, Harada K, Niimi M, Kamaguchi A: Production of contiguously arranged chlamydospores in Candida albicans. J Gen Microbiol 129: 2327, 1983.PubMedGoogle Scholar
  6. 6.
    Anderson J, Soll DR: Unique phenotype of opaque cells in the white- opaque transition of Candida albicans. J Bacteriol 169: 372, 1987.Google Scholar
  7. 7.
    Anderson JM, Soll D: Differences in actin localization during bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 132: 2035, 1986.PubMedGoogle Scholar
  8. 8.
    Arnold WN: Lipids in Arnold Lun (ed) Yeasts Cell Envelopes: Biochemistry, Biophysics, and Ultrastructure (Vol 1). CRC Press, Boca Raton, p. 97, 1981.Google Scholar
  9. 9.
    Ausiello CM, Spagnoli GC, Boccanera M, Casalinuovo I, Malavasi F, Casicani CU, Cassone A: Proliferation of human peripheral blood mononuclear cells induced by Candida albicans and its cell wall fractions. J Med Microbiol 22: 195, 1986.PubMedCrossRefGoogle Scholar
  10. 10.
    Au-Young J, Robbins PW: Cloning and expression of a chitin synthase gene from Candida albicans. Abstract presented at the Annual Meeting of the American Society for Microbiology, May 1988.Google Scholar
  11. 11.
    Backerspigel A: Some observations on the cytology of Candida albicans. J Bacteriol 87: 228, 1964.Google Scholar
  12. 12.
    Ballou CE: Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv Microbiol Physiol 14: 93, 1976.CrossRefGoogle Scholar
  13. 13.
    Ballou CE: Yeast cell wall and cell surface, in Strathern JN, Jones EW, Broach JR (eds) The Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 335, 1982.Google Scholar
  14. 14.
    Barrett-Bee K, Hayes Y, Wilson RG, Ryley J: A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. J Gen Microbiol 131: 1217, 1985.PubMedGoogle Scholar
  15. 15.
    Bartnicki-Garcia S: Cell wall chemistry, morphogenesis and taxonomy of fungi. Annu Rev Microbiol 22: 87, 1968.PubMedCrossRefGoogle Scholar
  16. 16.
    Bartnicki-Garcia S: Role of chitosomes in the synthesis of fungal cell walls. Microbiology 81: 238, 1981.Google Scholar
  17. 17.
    Bastide M, Trave P, Bastide JM: L’hydrolise enzymattique de la paroi appliquée à la classification del levures. Ann Microbiol 126A: 275, 1975.Google Scholar
  18. 18.
    Bianchi DE: Effect of inositol on the lipids of Candida albicans. Nature 210: 114, 1966.PubMedCrossRefGoogle Scholar
  19. 19.
    Bishop CT, Blank F, Gardner PE: The cell wall polysaccharides of Candida albicans: glucan, mannan and chitin. Can J Chem 38: 859, 1960.Google Scholar
  20. 20.
    Bistoni F, Vecchiarelli A, Cenci E, Puccetti P, Marconi P, Cassone A: Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect Immun 51: 668, 1986.PubMedGoogle Scholar
  21. 20a.
    Bistoni F, Verducci G, Perito S, Vecchiarelli A, Puccetti P, Marconi P, Cassone A: Immunomodulation by a low-virulence, agerminative variant of Candida albicans: further evidence for macrophage activation as one of the effector mechanisms of non-specific anti-infectious protection. J Med Vet Mycol 26: 285 - 299.Google Scholar
  22. 21.
    Bonaly R, Dari L, Kubiak C, Lejnne C, Lematre J, Poulain D: Alterations des parois de Candida albicans cultivées en presence de doses subletales de nystatine. Ann Inst Pasteur Microbiol 136B: 181, 1985.CrossRefGoogle Scholar
  23. 22.
    Bonaly A, Robert R, Tronchin G, Senet JM: Binding of human fibrinogen to Candida albicans in vitro: a preliminary study. J Med Vet My col 24: 345, 1986.CrossRefGoogle Scholar
  24. 23.
    Bonaly A, Robert, Tronchin G, Senet JM: Characterization of binding of human fibrinogen to the surface of germ-tubes and mycelium of Candida albicans. J Gen Microbiol 133: 545, 1987.Google Scholar
  25. 24.
    Borgers M: Ultrastructural correlates of antimycotic treatment, in McGinnis MR (ed) Current Topics in Medical Mycology (Vol 2). Springer-Verlag, New York, pp 1–39, 1988.Google Scholar
  26. 25.
    Bourke Hayes A: Chlamydospores production in Candida albicans. Mycopathol Mycol Appl 29: 87, 1966.CrossRefGoogle Scholar
  27. 26.
    Bozzola JJ, Mehta RJ, Nisbet LJ, Valenta JR: The effect of aculeacin A and papulacandin B on morphology and cell wall ultrastructure in Candida albicans. Can J Microbiol 30: 857, 1984.PubMedCrossRefGoogle Scholar
  28. 27.
    Braun PC Calderone RA: Chitin synthesis in Candida albicans: comparison of yeast and hyphal forms. J Bacteriol 133: 1472, 1978.PubMedGoogle Scholar
  29. 28.
    Brawner DL, Cutler JE: Variability in expression of cell surface antigens of Candida albicans during morphogenesis. Infect Immun 51: 337, 1986.PubMedGoogle Scholar
  30. 29.
    Brzobohaty B, Kovac L: Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity. J Gen Microbiol 132: 3089, 1986.PubMedGoogle Scholar
  31. 30.
    Bulawa CE, Slater M, Cabib E, An-Young J, Sburlati A, Adair Jr WL, Robbins PW: The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46: 213, 1986.PubMedCrossRefGoogle Scholar
  32. 31.
    Cabib E: The synthesis and degradation of chitin, in Meister A (ed) Advances in Enzymology and Related Areas of Molecular Biology. Wiley, New York, p 59, 1987.Google Scholar
  33. 32.
    Cabib E, Bowers B: Chitin and yeast budding: localization of chitin in yeast bud scars. J Biol Chem 246: 152, 1971.PubMedGoogle Scholar
  34. 33.
    Cabib E, Roberts R, Bowers B: Synthesis of the yeast cell wall and its regulation. Annu Rev Biochem 51: 763, 1982.PubMedCrossRefGoogle Scholar
  35. 34.
    Calderone RA, Lehrer N, Segal E: Adherence of Candida albicans to buccal and vaginal epithelial cells: ultrastructural observation. Can J Microbiol 30: 1001, 1984.PubMedCrossRefGoogle Scholar
  36. 35.
    Calderone R, Wadsworth E: Characterization with crossed immunoelectrophoresis of some antigens differentiating a virulent Candida albicans from its derived, avirulent strain (42552). Proc Soc Exp Biol Med 185: 325, 1987.PubMedGoogle Scholar
  37. 36.
    Calderone RA, Linehan L, Wadsworth E, Sandberg AL: Indentification of C3d receptors on Candida albicans. Infect Immun 56: 252, 1988.PubMedGoogle Scholar
  38. 37.
    Cannon RD, Kerridge D: The role of chitin synthase in the dimorphism of Candida albicans. Presented at the ASM Conference on the Biology and Pathogenicity of Genus Candida, Palm Springs, CA, 1987, Abstract 15, p 11.Google Scholar
  39. 38.
    Carrow EW, Domer JE: Immunoregulation in experimental murine candidiasis: specific suppression induced by Candida albicans cell wall glycoprotein. Infect Immun 49: 172, 1985.PubMedGoogle Scholar
  40. 39.
    Cassone A: Cell wall of pathogenic yeasts and implications for antimycotic therapy. Drugs Exp Clin Res 12: 635, 1986.PubMedGoogle Scholar
  41. 40.
    Cassone A: Improved visualization of wall ultrastructure in Saccharomyces cerevisiae. Experientia 29: 1303, 1973.PubMedCrossRefGoogle Scholar
  42. 41.
    Cassone A, Kerridge D, Gale EF: Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance. J Gen Microbiol 110: 339, 1979.PubMedGoogle Scholar
  43. 42.
    Cassone A, Marconi P, Bistoni F: Cell wall of Candida albicans and host response. CRC Crit Rev Microbiol 15: 87, 1987.CrossRefGoogle Scholar
  44. 43.
    Cassone A, Marconi P, Bistoni F, Mattia E, Sbaraglia G, Garaci E, Bonmassar E: Immunoadjuvant effect of Candida albicans and its cell wall fractions in a mouse lymphoma model. Cancer Immunol Immunother 10: 181, 1981.CrossRefGoogle Scholar
  45. 44.
    Cassone A, Mason RE, Kerridge D: Lysis of growing yeast form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia 19: 97, 1981.PubMedCrossRefGoogle Scholar
  46. 45.
    Cassone A, Mattia E, Boldrini L: Agglutination of blastospores of Candida albicans by concanavalin A and its relationship with the distribution of mannan polymers and the ultrastructure of the cell wall. J Gen Microbiol 105: 263, 1978.PubMedGoogle Scholar
  47. 46.
    Cassone A, Simonetti N, Strippoli V: Production, ultrastructure and germination of Candida albicans chlamydospores. Spores VI, American Society for Microbiology 172: 1975.Google Scholar
  48. 47.
    Cassone A, Simonetti N, Strippoli V: Ultrastructural changes in the wall during germ-tube formation from blastospores of Candida albicans. J Gen Microbiol 77–417, 1973.Google Scholar
  49. 48.
    Cassone A, Simonetti N, Strippoli V: Wall structure and bud formation in Cryptococcus neorformans. Arch Microbiol 95: 205, 1974.CrossRefGoogle Scholar
  50. 49.
    Cassone A, Sullivan PA, Shepherd MG: N-Acetyl-D-glucosamine-induced morphogenesis in Candida albicans. Microbiologica 18: 77, 1984.Google Scholar
  51. 50.
    Cassone A, Torosantucci A, Boccanera M, Pellegrini G, Palma C, Malavasi F: Production and characterization of a monoclonal antibody to a cell surface, glucomannoprotein constituent of Candida albicans and other pathogenic Candida species. J Med Microbiol 27: 233–238.Google Scholar
  52. 50a.
    Chaffin WL, Skudlarek J, Morrow KJ: Variable expression of a surface determinant during proliferation of Candida albicans. Infect Immun 56: 302, 1988.PubMedGoogle Scholar
  53. 51.
    Chaffin WL, Stocco DM: Cell wall proteins of Candida albicans. Can J Microbiol 29: 1438, 1983.PubMedCrossRefGoogle Scholar
  54. 52.
    Chattaway FW, Holmes MR, Barlow A JE: Cell wall composition of the mycelial and blastospore forms of Candida albicans. J Gen Microbiol 51: 367, 1968.PubMedGoogle Scholar
  55. 53.
    Chattaway FW, Shenolikar S, Barlow A JE: The release of acid phosphatase and polysaccharide-and protein-containing components from the surface of the dimorphic forms of Candida albicans by treatment with dithiothreitol. J Gen Microbiol 83: 423, 1974.PubMedGoogle Scholar
  56. 54.
    Chiew YY, Shephered MG, Sullivan PA: Regulation of chitin synthesis during germ-tube formation in Candida albicans. Arch Microbiol 125: 97, 1980.PubMedCrossRefGoogle Scholar
  57. 55.
    Cole GT: Architecture and chemistry of the cell walls of higher fungi. Microbiology 81: 227, 1981.Google Scholar
  58. 56.
    Cox RA: Cell-mediated immunity, in Howard DH (ed) Fungi Pathogenic for Humans and Animals. Part B. Marcel Dekker, New York, 87, 1983.Google Scholar
  59. 57.
    Critchley IA, Douglas LJ: Isolation and partial characterization of an adhesin from Candida albicans. J Gen Microbiol 133: 629, 1987.PubMedGoogle Scholar
  60. 58.
    Critchley IA, Douglas LJ: Role of glycosides as epithelial cell receptors for Candida albicans. J Gen Microbiol 133: 637, 1987.PubMedGoogle Scholar
  61. 58.
    Critchley IA, Douglas LJ: Role of glycosides as epithelial cell receptors for Candida albicans. J Gen Microbiol 133: 637, 1987.PubMedGoogle Scholar
  62. 60.
    Cuff CF, Rogers CM, Lamb BJ, Rogers TJ: Induction of suppressor cells in vitro by Candida albicans. Cell Immunol 100: 47, 1986.PubMedCrossRefGoogle Scholar
  63. 61.
    Cutler JE, Friedman L, Milner KC: Biological and chemical characterization of toxic substances from Candida albicans. Infect Immun 6: 616, 1972.PubMedGoogle Scholar
  64. 62.
    Cutler JD, Lloyd RK: Enhanced antibody response induced by Candida albicans in mice. Infect Immun 38: 1102, 1983.Google Scholar
  65. 63.
    Davies RR, Denning TJV: Candida albicans and the fungicidal activity of the blood. Sabouraudia 10: 201, 1972.Google Scholar
  66. 64.
    De Nollin S, Thone F, Borgers A: Enzyme cytochemistry of Candida albicans. J Histochem Cytochem 23: 758, 1975.PubMedCrossRefGoogle Scholar
  67. 65.
    Dickerson AC, Backer RCF: The binding of enzymes to fungal beta-glucans. J Gen Microbiol 112: 67, 1979.Google Scholar
  68. 66.
    Diedrich D, Mendel SM, Lawrence RM: Apparent extracellular glycoprotein turnover product from Candida albicans. Mycopathologia 86: 65, 1984.PubMedCrossRefGoogle Scholar
  69. 67.
    Djaczenko W, Cassone A: Visualization of new ultrastructural components in the cell wall of Candida albicans with fixatives containing TAPO. J Cell Biol 52: 186, 1971.CrossRefGoogle Scholar
  70. 68.
    Djeu JY, Kay-Blanchard D: Regulation of human polymorphonuclear neutrophil (PMN) activity against Candida albicans by large granular lymphocytes via release of a PMN-activating factor. J Immunol 139: 2761, 1987.PubMedGoogle Scholar
  71. 69.
    Domer JE, Elkins KL, Ennist DL, Stashak PW, Garner RE, Baker PJ: Enhancement of non-Candida antibody responses by Candida albicans cell wall glycoprotein. Infect Immun 55: 2619, 1987.PubMedGoogle Scholar
  72. 70.
    Domer JE, Hector RF: Enhanced immune response in mice treated with penicillin-tetracycline or trimethoprim-sulfamethoxazole when colonized intragastrically with Candida albicans. Antimicrob Agents Chemother 31: 691, 1987.PubMedGoogle Scholar
  73. 71.
    Domer JE, Stashak PW, Elkins K, Prescott B, Caldes G, Baker PJ: Separation of immunomodulatory effects of mannan from Candida albicans into stimulatory and suppressive components. Cell Immunol 101: 403, 1986.PubMedCrossRefGoogle Scholar
  74. 72.
    Douglas JL: Adhesion of Candida species to epithelial surfaces. CRC Crit Rev Microbiol 15: 27, 1987.CrossRefGoogle Scholar
  75. 73.
    Drewe JA: The ultrastructural appearance of Candida albicans with different fixatives. Med Sci Lab 38: 237, 1981.Google Scholar
  76. 74.
    Duffus JH, Levi C, Manners DJ: Yeast cell-wall glucans. Adv Microb Physiol 23: 151, 1982.PubMedCrossRefGoogle Scholar
  77. 75.
    Duran A, Bowers B, Cabib E: Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc Natl Acad Sei USA 72: 3952, 1975.CrossRefGoogle Scholar
  78. 76.
    Durandy A, Fischer A, Griscelli C: Specific in vitro antimannan-rich antigen of Candida albicans antibody production by sensitized human blood lymphocytes. J Clin Invest 71: 1602, 1983.PubMedCrossRefGoogle Scholar
  79. 77.
    Ellul H, Beezer AE, Brain APR, Miles RJ, Sivayogan SR: The effect of chemical modification of Saccharomyces cerevisiae on electrophoretic mobility, cell-wall structure and amphotericin B uptake. Biochim Biophys Acta 845: 151, 1985.PubMedCrossRefGoogle Scholar
  80. 78.
    Elorza MV, Murgui A, Rico H, Miragall F, Sentandreu R: Formation of a new cell wall by protoplasts of Candida albicans: effect of papulacandin B, tunicamycin and nikkomycin. J Gen Microbiol 133: 2315, 1987.PubMedGoogle Scholar
  81. 79.
    Elorza MV, Murgui A, Sentandreu R: Dimorphism in Candida albicans: contribution of mannoproteins to the architecture of yeast and mycelial cell walls. J Gen Microbiol 131: 2209, 1985.PubMedGoogle Scholar
  82. 80.
    Elorza MV, Rico H, Gozalbo D, Sentandreu R: Cell wall composition and protoplast regeneration in Candida albicans. Antonie van Leeuwenhoek 49: 457, 1983.PubMedGoogle Scholar
  83. 81.
    Elorza MV, Rico H, Sentandreu R: Calcoflour white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol 129: 1577, 1983.PubMedGoogle Scholar
  84. 82.
    Eng RHK, Drehmel R, Smith SM, Goldstein EJC: Saccharomyces cerevisiae infections in man. Sabouraudia 22: 403, 1984.PubMedCrossRefGoogle Scholar
  85. 83.
    Evron R, Drewe JA: Demonstration of the polysaccharides in the cell wall of Candida albicans blastospores, using silver methenamine staining and a sequence of extraction procedures. Mycopathologia 84:141, 1983/1984.Google Scholar
  86. 84.
    Farkas V: Biosynthesis of cell walls in fungi. Microbiol Rev 43: 117, 1979.PubMedGoogle Scholar
  87. 85.
    Field C, Schekman R: Localized secretion of acid phosphatase reflects the pattern of cell surface growth in Saccharomyces cerevisiae. J Cell Biol 86: 123, 1980.PubMedCrossRefGoogle Scholar
  88. 86.
    Fleet GH: Composition and structure of yeast cell walls, in McGinnis MR (ed) Current Topics in Medical Mycology (Vol 1). Springer-Verlag, New York, p 24, 1985.Google Scholar
  89. 87.
    Fleet GH: Phaff HJ: Glucanases in Schizosaccharomyces: isolation and properties of the cell wall-associated ß-(l-3) glucanases. J Biol Chem 249: 1717, 1974.PubMedGoogle Scholar
  90. 88.
    Frevert J, Ballou CE: Saccharomyces cerevisiae structural cell wall mannoprotein. Biochemistry 24: 753, 1985.PubMedCrossRefGoogle Scholar
  91. 89.
    Funayama M, Nishikaws A, Shinoda T, Suzuki M, Fukazawa Y: Antigenic relationship between Candida parapsilosis and Candida albicans serotype B. Microbiol Immunol 28: 1359, 1984.PubMedGoogle Scholar
  92. 90.
    Gale EF: Nature and development of phenotypic resistance to amphotericin B in Candida albicans. Adv Microb Physiol 27: 314, 1986.Google Scholar
  93. 91.
    Gale GR: Cytology of Candida albicans as influenced by drugs acting on the cytoplasmic membrane. J Bacteriol 86: 151, 1963.PubMedCrossRefGoogle Scholar
  94. 92.
    Gardiner R, Podgorski C, Day AW: Serological studies of the fimbriae of yeast and yeast-like species. Bot Gaz 143: 534, 1982.CrossRefGoogle Scholar
  95. 93.
    Gay JL, Martin M: An electron microscopic study of bud development in Saccharonycodes ludwigii and Saccharomyces cerevisiae. Arch Mikrobiol 78: 145, 1971.PubMedCrossRefGoogle Scholar
  96. 94.
    Ghannoum MA, Burns GR, Elteen KA, Radwan SS: Experimental evidence for the role of lipids in adherence of Candida spp. to human buccal epithelial cells. Infect Immun 54: 189, 1986.PubMedGoogle Scholar
  97. 95.
    Ghannoum MA, Janini G, Khamis L, Radwan SS: Dimorphism-associated variations in the lipid composition of Candida albicans. J Gen Microbiol 132: 2367, 1986.PubMedGoogle Scholar
  98. 96.
    Gilbertson SM, Shah PD, Rowley DA: NK Cells suppress the generation of Lyt-2+ cytolytic T cells by suppressing or eliminating dendritic cells. J Immunol 136: 3567, 1986.PubMedGoogle Scholar
  99. 96a.
    Gilmore B, Retsinas E, Lorenz JS, Hostetter MK: An iC3b receptor on Candida albicans: structure, function and correlates for pathogenicity. J Infect Dis 157: 36, 1988.CrossRefGoogle Scholar
  100. 97.
    Gilmore BJ, Hostetter MK: Structural and functional characteristics of an iC3b receptor on Candida albicans. Presented at the ASM Conference on the Biology and Pathogenicity of Genus Candida, Palm Springs, CA, 1987, abstract 2, p 9.Google Scholar
  101. 98.
    Goldstein IJ, Hammarstrom S, Sundblad G: Precipitation and carbohydrate binding specificity studies on wheat germ agglutinin. Biochim Biophys Acta 405: 53, 1975.PubMedGoogle Scholar
  102. 99.
    Gooday GW, Gow NAR: A model of the hyphal septum of Candida albicans. Exp Mycol 7: 370, 1983.CrossRefGoogle Scholar
  103. 100.
    Gooday GW, Trinci APJ: Wall structure and biosynthesis in fungi. Symp Soc Gen Microbiol 30: 207, 1980.Google Scholar
  104. 101.
    Gopal P, Sullivan PA, Shepherd MG: Isolation and structure of glucan from regenerating spheroplasts of Candida albicans. J Gen Microbiol 130: 1217, 1984.PubMedGoogle Scholar
  105. 102.
    Gopal PK, Shepherd MG, Sullivan PA: Analysis of wall glucans from yeast, hyphal and germ-tube forming cells of Candida albicans. J Gen Microbiol 130: 3295, 1984.PubMedGoogle Scholar
  106. 103.
    Gow NAR, Goodway GW: A model for the germ-tube formation and mycelial growth form of Candida albicans. Sabouraudia 22: 137, 1984.PubMedCrossRefGoogle Scholar
  107. 104.
    Gozalbo D, Dubon F, Schwencke J, Sentandreu R: Characterization of chitosomes in Candida albicans protoplasts. Exp Mycol 11: 331, 1987.CrossRefGoogle Scholar
  108. 105.
    Hasenclever HF, Mitchell WO: Antigenic studies of Candida. I. Observation of two antigenic groups in Candida albicans. J Bacteriol 82: 570, 1961.PubMedGoogle Scholar
  109. 106.
    Hasenclever HF, Mitchell WO: A study of yeast surface antigens by agglutination inhibition. Sabouraudia 3: 288, 1964.PubMedCrossRefGoogle Scholar
  110. 107.
    Heidenreich F, Diedrich MP: Candida albicans and Candida stellatoidea, in contrast to other Candida species, bind iC3b and C3d but not C3b. Infect Immun 50: 598, 1985.PubMedGoogle Scholar
  111. 108.
    Herrero E, Sanz P, Sentandreu R: Cell wall proteins liberated by zymolyase from several ascomycetous and imperfect yeasts. J Gen Microbiol 133: 2895, 1987.Google Scholar
  112. 109.
    Hein HN, Fleet GH: Separation and characterization of six (l-3)-ß-glucanases from Saccharomyces cerevisiae. J Bacteriol 156: 1204, 1983.Google Scholar
  113. 110.
    Hilenski LL, Naider F, Becker JM: Polyoxin D inhibits colloidal gold-wheat germ agglutinin labelling of chitin in dimorphic forms of Candida albicans. J Gen Microbiol 132: 1441, 1986.PubMedGoogle Scholar
  114. 111.
    Hodes DS, Heon D, Hass A, Hyatt AC, Hodes HL: Reaction of fungal products with amebocyte lysates of the Japanese horseshoe crab, Tachypilus tridentatus. J Clin Microbiol 25: 1701, 1987.PubMedGoogle Scholar
  115. 112.
    lila. Hopwood V, Poulain D, Fortier B, Evans EGV, Vernes A: A monoclonal antibody to a cell wall component of Candida albicans. Infect Immun 54: 222, 1986.Google Scholar
  116. 112.
    Horisberger M, Vonlanthen M: Location of mannan and chitin on thin sections of budding yeasts with gold markers. Arch Microbiol 115: 1, 1977.PubMedCrossRefGoogle Scholar
  117. 113.
    Howlett JA, Squier CA: Candida albicans ultrastructure: colonization and invasion of oral epithelium. Infect Immun 29: 252, 1980.PubMedGoogle Scholar
  118. 114.
    Hubbard MJ, Sullivan PA, Shepherd MG: Morphological studies of N-acetylglucosamine induced germ tube formation by Candida albicans. Can J Microbiol 31: 696, 1985.PubMedCrossRefGoogle Scholar
  119. 115.
    Jansons VK, Nickerson WJ: Chemical composition of chlamydospores of Candida albicans. J Bacteriol 104: 922, 1970.PubMedGoogle Scholar
  120. 116.
    Jansons VK, Nickerson WJ: Induction, morphogenesis and germination of the chlamydospores of Candida albicans. J Bacteriol 104: 910, 1970.PubMedGoogle Scholar
  121. 117.
    Johnson BF: Lysis of yeast cell walls induced by 2-deoxyglucose at sites of glucan synthesis. J Bacteriol 95: 1169, 1968.PubMedGoogle Scholar
  122. 118.
    Jones GH, Ballou CE: Studies on the structure of yeast mannan. II. Mode of action of the Arthrobacter α-mannosidase on yeast mannan. J Biol Chem 244: 1052, 1969.PubMedGoogle Scholar
  123. 119.
    Kidby DK, Davies R: Invertase and disulphide bridges in the yeast wall. J Gen Microbiol 61: 327, 1970.PubMedGoogle Scholar
  124. 120.
    Kimata H, Shanean F, Brogan M, Targan S, Saxon A: Modulation of ongoing human immunoglobulin synthesis by natural killer cells. Cell Immunol 107: 74, 1967.CrossRefGoogle Scholar
  125. 121.
    Kimura LH, Pearsall NN: Relationship between germination of Candida albicans and increased adherence to human buccal epithelial cells. Infect Immun 28: 464, 1980.PubMedGoogle Scholar
  126. 121a.
    Kogan G, Pavliak W, Masler L: Structural studies of mannan from the cell walls of the pathogenic yeast Candida albicans serotypes A and B and Candida parapsilosis. Carbohydr Res 172: 243, 1988.PubMedCrossRefGoogle Scholar
  127. 122.
    Kokoshis PL, Williams DL, Cook JA, Di Luzio NR: Increased resistance to Staphylococcus aureus infection and enhancement of serum lysozyme activity by glucan. Science 199: 1340, 1978.PubMedCrossRefGoogle Scholar
  128. 123.
    Kopecka M: Electron microscopic study of purified polysaccharide components glucans and mannan of the cell walls in the yeast Saccharomyces cerevisiae. J Basic Microbiol 25: 161, 1985.PubMedCrossRefGoogle Scholar
  129. 124.
    Kopecka M, Farkas V: RNA synthesis and the formation of the cell wall: effect of lomofungin on regenerating protoplasts of Saccharomyces cerevisiae. J Gen Microbiol 110: 453, 1979.Google Scholar
  130. 125.
    Kopecka M, Garbriel M: Some anucleated yeast protoplasts synthesize ß-(l-3)-D-glucan microfibrils of the cell wall. Naturwissenschaften 74: 389, 1987.CrossRefGoogle Scholar
  131. 126.
    Kopecka M, Phaff HJ, Fleet GH: Demonstration of a fibrillar component in the cell wall of the yeast Saccharomyces cerevisiae and its chemical nature. J Cell Biol 62: 66, 1974.PubMedCrossRefGoogle Scholar
  132. 127.
    Kreger DR, Kopecka M: On the nature and formation of the fibrillar nets produced by protoplasts of Saccharomyces cerevisiae in liquid media: an electronmicroscopic, x-ray diffraction and chemical study. J Gen Microbiol 92: 207, 1975.Google Scholar
  133. 128.
    Kreger-Van Rij NJW: A comparative study of the cell wall structure of basidiomycetous and related yeasts. J Gen Microbiol 68: 87, 1971.Google Scholar
  134. 129.
    Kreger-van Rij NJW: The cell wall. I. Ultrastructure of the cell wall, in Kregervan Rij NJW (ed) the Yeasts, a Taxonomic Study. Elsevier, Amsterdam, pp 21–22, 1984.Google Scholar
  135. 130.
    Langsley G, Roth C: Antigenic variations in parasitic protozoa. Microbiol Sci 4: 280, 1987.PubMedGoogle Scholar
  136. 131.
    Lee JC, King RD: Characterization of Candida albicans adherence to human vaginal epithelial cells in vitro. Infect Immun 41: 1024, 1983.PubMedGoogle Scholar
  137. 132.
    Linnemans WAM, Boer P, Elbers PF: Localization of acid phosphatase in Saccharomyces cerevisiae: a clue to cell wall formation. J Bacteriol 131: 638, 1977.PubMedGoogle Scholar
  138. 133.
    Luft JH: The structure and properties of cell surface coat. Int Rev Cytol 16: 525, 1976.Google Scholar
  139. 134.
    Lyon FL, Domer JE: Chemical and enzymatic variation in the cell walls of pathogenic Candida species. Can J Microbiol 31: 590, 1985.PubMedCrossRefGoogle Scholar
  140. 135.
    Macdonald F, Odds FC: Inducible proteinase of Candida albicans in diagnostic serology and in the pathogenesis of systemic candidosis. J Med Microbiol 13: 423, 1980.PubMedCrossRefGoogle Scholar
  141. 136.
    Mackenzie DWR: Serodiagnosis, in Howard DH (ed) Fungi Pathogenic for Humans and Animals. Part B. Marcel Dekker, New York, pp 121–218, 1983.Google Scholar
  142. 137.
    Maerkisch U, Reuter G, Stateva L, Venkov P: Mannan structure analysis of the fragile Saccharomyces cerevisiae mutant VY1160. Int J Biochem 15: 1373, 1977.CrossRefGoogle Scholar
  143. 138.
    Mahvi TA, Spicer SS, Wright NJ: Cytochemistry of acid mucosubstances and acid phosphatase in Cryptococcus neoformans. Can J Microbiol 20: 833, 1974.PubMedCrossRefGoogle Scholar
  144. 139.
    Mansell PWA, Di Luzio NR, McNamee R, Rowden G, Proctor JW: Recognition factors and non-specific macrophage-activation in the treatment of neoplastic disease. Ann NY Acad Sci 277: 20, 1976.PubMedCrossRefGoogle Scholar
  145. 140.
    Marchant R, Smith DG: Bud formation in Saccharomyces cerevisiae and a comparison with the mechanism of cell division in other yeasts. J Gen Microbiol 53: 163, 1968.PubMedGoogle Scholar
  146. 141.
    Marconi P, Scaringi L, Tissi L, Boccanera M, Bistoni F, Bonmassar E, Cassone A: Induction of natural killer cell activity by inactivated Candida albicans in mice. Infect Immun 50: 297, 1985.PubMedGoogle Scholar
  147. 142.
    Marriott MS: Mannan-protein location and biosynthesis in plasma membranes from the yeast form of Candida albicans. J Gen Microbiol 103: 51, 1977.PubMedGoogle Scholar
  148. 143.
    Mattia E, Carruba G, Angiolella L, Cassone A: Induction of germ-tube formation by W-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response. J Bacteriol 152: 555, 1982.PubMedGoogle Scholar
  149. 144.
    McCarthy PJ, Troke PF, Gull K: Mechanism of action of nikkomycin and the peptide transport system of Candida albicans. J Gen Microbiol 131: 775, 1985.PubMedGoogle Scholar
  150. 145.
    McCourtie J, Douglas LJ: Extracellular polymer of Candida albicans: isolation, analysis and role in adhesion. J Gen Microbiol 131: 495, 1985.PubMedGoogle Scholar
  151. 146.
    McCourtie J, Douglas LJ: Relationship between cell surface composition, adherence and virulence of Candida albicans. Infect Immun 45: 6, 1984.PubMedGoogle Scholar
  152. 147.
    Miller SE, Finnerty WR: Age-related physiological studies comparing Candida albicans chlamydospores to yeasts. Can J Microbiol 25: 765, 1979.PubMedCrossRefGoogle Scholar
  153. 148.
    Miller SE, Spurlock BO, Michaels GE: Electron microscopy of young Candida albicans chlaymydospores. J Bacteriol 119: 992, 1974.PubMedGoogle Scholar
  154. 149.
    Molano J, Bowers B, Cabib E: Distribution of chitin in the yeast cell wall: an ultrastructural and chemical study. J Cell Biol 85: 199, 1980.PubMedCrossRefGoogle Scholar
  155. 150.
    Molina M, Cenamor R, Nombela C: Exo-l,3-ß-glucanase activity in Candida albicans: effect of the yeast-to-mycelium transition. J Gen Microbiol 133: 609, 1987.PubMedGoogle Scholar
  156. 151.
    Montes LF, Wilborn WH: Ultrastructural features of host-parasite relationship in oral candidiasis. J Bacteriol 96: 1349, 1968.PubMedGoogle Scholar
  157. 152.
    Müller J : Immunobiological aspects of Candida mycoses: a review of electron microscopic studies. Mykosen 289(suppl I): 1, 1978.Google Scholar
  158. 153.
    Müller J Kappe R: Immunochemistry of fungal antigens at the electron microscopy level, in Muller JP (ed) 1st International Symposium on Fungal Antigens, November 1986, Paris. Latge Plenum, 1988 (in press).Google Scholar
  159. 154.
    Munayer H, Schwartz JL, Smoliga DL, Loebenberg D, Finkelstein M: Can¬dida albicans adherence to concanavalin A-Sepharose and its correlation to pathogenicity. Presented at the ASM Conference on the Biology and Pathogenicity of genus Candida, Palm Springs, CA, 1987, abstract 1, p 9.Google Scholar
  160. 155.
    Murgui A, Elorza MV, Sentandreu R: Effect of papulacandin B and calcofluor white on the incorporation of mannoproteins in the wall of Candida albicans blastospores. Biochim Biophys Acta 841: 215, 1985.PubMedGoogle Scholar
  161. 156.
    Murgui A, Elorza MV, Sentandreu R: Tunicamycin and papulacandin B inhibit incorporation of specific mannoproteins into the wall of Candida albicans regenerating protoplasts. Biochim Biophys Acta 884: 550, 1986.PubMedGoogle Scholar
  162. 157.
    Nagase T, Mikami T, Suzuki S, Schmerch C, Suzuki M: Lethal effect of neutral mannan fraction of Baker’s yeast in mice. Microbiol Immunol 28: 997, 1984.PubMedGoogle Scholar
  163. 158.
    Negi M, Tsuboi R, Matsui T, Ogawa H: Isolation and characterization of proteinase from Candida albicans: substrate specificity. J Invest Dermatol 83: 32, 1984.PubMedCrossRefGoogle Scholar
  164. 159.
    Nelson RD, Herron MJ, McCormack RT, Gehrz RC: Two mechanisms of inhibition of human lymphocyte proliferation by soluble yeast mannan polysaccharide. Infect Immun 43: 1041, 1984.PubMedGoogle Scholar
  165. 160.
    Notario V: ß-Glucanases from Candida albicans: purification, characterization and the nature of their attachment to cell wall components. J Gen Microbiol 128:747, 1982.Google Scholar
  166. 161.
    Notario V, Gale EF, Kerridge D, Wayman F: Phenotypic resistance to amphothericin B in Candida albicans: relationship to glucan metabolism. J Gen Microbiol 128: 761, 1982.PubMedGoogle Scholar
  167. 162.
    Novick P, Botstein D: Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40: 405, 1985.PubMedCrossRefGoogle Scholar
  168. 163.
    Novick P, Schekman R: Export of major cell surface proteins is blocked in yeast secretory mutants. J Cell Biol 96: 541, 1983.PubMedCrossRefGoogle Scholar
  169. 164.
    Odds FC: Candida and Candidosis. CRC Crit Rev Microbiol 15: 1, 1987.CrossRefGoogle Scholar
  170. 165.
    Odds FC: Morphogenesis in Candida albicans. CRC Crit Rev Microbiol 12: 45, 1985.CrossRefGoogle Scholar
  171. 166.
    Okubo Y, Ichikawa T, Suzuki S: Relationship between phosphate content and immunochemical properties of subfractions of Baker’s yeast mannan. J Bacteriol 136: 63, 1978.PubMedGoogle Scholar
  172. 167.
    Orlean P: Two chitin synthases in Saccharomyces cerevisiae. J Biol Chem 262: 5732, 1987.PubMedGoogle Scholar
  173. 168.
    Parodi AJ: Biosynthetic mechanisms for cell envelope polysaccharides, in Arnold WN (ed) Yeast Cell Envelopes: Biochemistry, Biophysics, and Ultra-structure (Vol 2). CRC Press, Boca Raton, 47, 1981.Google Scholar
  174. 169.
    Peat S, Whelan WJ, Edwards TE: Polysaccharides of Baker’s yeast. IV. Mannan. J Chem Soc 1: 29, 1961.CrossRefGoogle Scholar
  175. 170.
    Persi MA, Burnham JC: Use of tannic acid as a fixative-mordant to improve the ultrastructural appearance of Candida albicans blastospores. Sabouraudia 19: 1, 1981.PubMedCrossRefGoogle Scholar
  176. 171.
    Persi AM, Burnham JC, Duhring JL: Effect of carbon dioxide and pH on adhesion of Candida albicans to vaginal epithelial cells. Infect Immun 50: 82, 1985.PubMedGoogle Scholar
  177. 172.
    Pesti M, Novak EK, Ferenczy L, Svoboda A: Freeze fracture electron microscopical investigation of Candida albicans cells sensitive and resistant to nystatin. Sabouraudia 19: 17, 1981.PubMedCrossRefGoogle Scholar
  178. 173.
    Piccolella E, Lombardi G, Morelli R: Mitogenic response of human peripheral blood lymphocytes to a purified C. albicans polysaccharide fraction: lack of helper activities is responsible for the in vitro unresponsiveness to a second antigenic challenge. J Immunol 126: 2156, 1981.PubMedGoogle Scholar
  179. 174.
    Ponton J, Jones JM: Analysis of cell wall extracts of Candida albicans by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques. Infect Immun 53: 565, 1986.PubMedGoogle Scholar
  180. 175.
    Ponton J, Jones JM: Identification of two germ-tube-specific cell wall antigens of Candida albicans. Infect Immun 54: 864, 1986.PubMedGoogle Scholar
  181. 175.
    Ponton J, Jones JM: Identification of two germ-tube-specific cell wall antigens of Candida albicans. Infect Immun 54: 864, 1986.PubMedGoogle Scholar
  182. 177.
    Poulain D, Tronchin G, Dubremetz JF, Biguet J: Ultrastructure of the cell wall of Candida albicans blastospores: study of its constitutive layers by the use of a cytochemical technique revealing polysaccharides. Ann Microbiol 129A: 141, 1978.Google Scholar
  183. 178.
    Poulain D, Tronchin G, Jouvert S, Herbaut J, Biguet J: Architecture pariétale des blastospores de Candida albicans: localisation de composants chimiques et antigéniques. Ann Microbiol 132A: 219, 1981.Google Scholar
  184. 179.
    Poulain D, Tronchin G, Varnes A: Application d’une methode d’extraction des lipides aux parois des blastospores de Candida albicans. Mycopathologia 92: 141, 1985.PubMedCrossRefGoogle Scholar
  185. 180.
    Presseur HJ: The influence of preparation on the ultrastructure of fungi. Mykosen (Suppl 1 ): 43, 1978.Google Scholar
  186. 181.
    Quindos G, Ponton J, Cisterna R: Detection of antibodies to Candida albicans germ tube in the diagnosis of systemic candidiasis. Eur J Clin Microbiol 6: 142, 1987.PubMedCrossRefGoogle Scholar
  187. 182.
    Randoms BM, Smith AG: Germination of the chlamydospores of Candida albicans. Mycopathologia 78: 87, 1982.CrossRefGoogle Scholar
  188. 183.
    Reiss E: Cell wall composition, in Howard DH (ed) Fungi Pathogenic for Humans and Animals. Part B II Marcel Dekker, New York, p 57, 1985.Google Scholar
  189. 184.
    Rivas V, Roger TJ: Studies on the cellular nature of Candida albicans-induced suppression. J Immunol 130: 376, 1983.PubMedGoogle Scholar
  190. 185.
    Rogers TG, Balish E: Effect of systemic candidiasis on blastogenesis of lymphocytes from germ-free and conventional rats. Infect Immun 20: 142, 1978.PubMedGoogle Scholar
  191. 186.
    Rotrosen D, Calderone RA, Edwards Jr JE: Adherence of Candida species to host tissue and plastic surface. Rev Infect Dis 8: 73, 1986.PubMedCrossRefGoogle Scholar
  192. 187.
    Ruchel R, Boning B, Jahn E: Identification and partial characterization of two proteinase from the cell envelope of Candida albicans blastospores. Zentralbl Bakteriol Mikrobiol Hyg [A] 260: 523, 1985.Google Scholar
  193. 188.
    Sandin RL: Studies on cell adhesion and concanavalin A-induced agglutination of Candida albicans after mannan extraction. J Med Microbiol 24: 145, 1987.PubMedCrossRefGoogle Scholar
  194. 189.
    Sandin RL, Rogers AL, Patterson RJ, Beneke ES: Evidence for mannose-mediated adherence of Candida albicans to human buccal cells in vitro. Infect Immun 35: 79, 1982.PubMedGoogle Scholar
  195. 190.
    Sburlati A, Cabib E: Chitin synthase 2, a presumptive participant in septum formation in Saccharomyces cerevisiae. J Biol Chem 261: 1547, 1986.Google Scholar
  196. 191.
    Scaringi L, Marconi P, Boccanera M, Tissi L, Bistoni F, Cassone A: Cell wall components of Candida albicans as immunomodulators: induction of natural killer and macrophage-mediated peritoneal cell cytotoxicity in mice by mannoprotein and glucan fractions. J Gen Microbiol 134: 1265, 1988.PubMedGoogle Scholar
  197. 192.
    Schekman R, Novick P: The secretory process and yeast cell-surface assembly, in Strathern JN, Jones EW, Broach JR (eds) The Molecular Biology of Yeast Saccharomyces. Metabolism and Gene Expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 361, 1982.Google Scholar
  198. 193.
    Scherwitz C, Martin R, Ueberger H: Ultrastructural investigations of the formation of Candida albicans germ tubes and septa. Sabouraudia 16: 115, 1978.PubMedCrossRefGoogle Scholar
  199. 194.
    Segal E, Lehrer N, Ofek I: Adherence of Candida albicans to human vaginal epithelial cells: inhibition by aminosugars. Exp Cell Biol 50: 13, 1982.PubMedGoogle Scholar
  200. 195.
    Seljelid R, Bogwald J, Lundwall A: Glycan stimulation of macrophages in vitro. Exp Cell Res 131: 121, 1981.CrossRefGoogle Scholar
  201. 196.
    Sentandreu R, Herrero E, Martinez-Garcia JP, Larriba G: Biogenesis of the yeast cell wall, in Roodyn DB (ed) Subcellular Biochemistry (Vol 10). Plenum Press, New York and London, pp 193–235, 1984.Google Scholar
  202. 197.
    Sentandreu R, Northcote DH: The formation of buds in yeast. J Gen Microbiol 55: 393, 1969.PubMedGoogle Scholar
  203. 198.
    Sentandreu R, Villanueva JR: Electron microscopy of thin sections of Candida utilis: the structure of the cell wall. Arch Mikrobiol 50: 103, 1965.PubMedCrossRefGoogle Scholar
  204. 199.
    Sevilla MJ, Odds FC: Development of Candida albicans hyphae in different growth media: variations in growth rates, cell dimensions and timing of morphogenetic events. J Gen Microbiol 132: 3083, 1986.PubMedGoogle Scholar
  205. 200.
    Shannon JL: Scanning and transmission electron microscopy of Candida albicans chlamydospores. J Gen Microbiol 125: 199, 1981.PubMedGoogle Scholar
  206. 201.
    Shepherd MG: Cell envelope of Candida albicans. CRC Crit Rev Microbiol 15: 7, 1987.CrossRefGoogle Scholar
  207. 202.
    Shepherd MG: Morphogenetic transformation of fungi, in McGinnis MR (ed) Current Topics in Medical Mycology (Vol 2). Springer Verlag, New York, p 278, 1988.Google Scholar
  208. 203.
    Shepherd MG, Poulter RTM, Sullivan PA: Candida albicans: biology, genetics, and pathogenicity. Annu Rev Microbiol 39: 759, 1985.CrossRefGoogle Scholar
  209. 204.
    Shibata N, Ichikawa T, Tojo M, Takahashi M, Ito N, Okubo Y, Suzuki S: Immunochemical study on the mannans of Candida albicans NIH A-207, NIH B-792, and J-1012 strains prepared by fractional precipitation with cetyltrimethylammonium bromide. Arch Biochem Biophys 243: 338, 1985.PubMedCrossRefGoogle Scholar
  210. 205.
    Shibata N, Kobayashi H, To jo M, Suzuki S: Characterization of phosphor-mannan-protein complexes isolated from viable cells of yeast and mycelial forms of Candida albicans NIH-B-792 strain by the action of zymolyase-100T. Arch Biochem Biophys 251: 697, 1986.PubMedCrossRefGoogle Scholar
  211. 206.
    Shibata N, Mizugami K, Suzuki S: Immunochemical properties of mannan-protein complex isolated from viable cells of Saccharomyces cerevisiae 4484- 24D-1 mutant strain by the action of zymolyase. Microbiol Immunol 28: 1292, 1964.Google Scholar
  212. 207.
    Shimokawa O, Nakayama H: A Candida albicans rough-type mutant with increased all surface hydrophobicity and a structural defect in the cell wall mannan. J Med Vet Mycol 24: 165, 1986.PubMedCrossRefGoogle Scholar
  213. 208.
    Shimokawa O, Nakayama H: Isolation of a Candida albicans mutant with reduced content of cell wall mannan and deficient mannan phosphorylation. Sabouraudia 22: 315, 1984.PubMedCrossRefGoogle Scholar
  214. 209.
    Shiota M, Nakajima T, Saton A, Shida M, Matsuda K: Comparison of ß-glucan structures in a cell wall mutant of Saccharomyces cerevisiae and the wild type. J Biochem 98: 1301, 1985.PubMedGoogle Scholar
  215. 210.
    Sietsma JH, Wessels JGH: Evidence for covalent linkages between chitin and ß-glucan in a fungal wall. J Gen Microbiol 114: 99, 1979.Google Scholar
  216. 211.
    Sietsma JH, Wessels JGH: Solubility of (l→3)-ß-D/(1→6)-ß-D-glucan in fungal walls: importance of presumed linkage between glucan and chitin. J Gen Microbiol 125: 209, 1981.PubMedGoogle Scholar
  217. 212.
    Skerl KG, Calderone R, Sreevalsan T: Platelet interactions with Candida albicans. Infect Immun 34: 938, 1981.PubMedGoogle Scholar
  218. 213.
    Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR: “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 169: 189, 1987.PubMedGoogle Scholar
  219. 214.
    Sobel JD, Myers PG, Kaye D, Levison ME: Adherence of Candida albicans to human vaginal and buccal epithelial cells. J Infect Dis 143: 76, 1981.PubMedCrossRefGoogle Scholar
  220. 215.
    Soll D, Herman MA, Staebell MA: The involvement of cell wall expansion in the two modes of mycelium formation of Candida albicans. J Gen Microbiol 131: 2367, 1985.PubMedGoogle Scholar
  221. 216.
    Soll DR, Langtinem CJ, McDowell J, Hicks J, Galask R: High-frequency switching in Candida strains isolated from vaginitis patients. J Clin Microbiol 25: 1611, 1987.PubMedGoogle Scholar
  222. 217.
    Spagnoli GC, Ausiello C, Casalinuovo I, Antonelli G, Dianzani F, Cassone A: Candida albicans and a phosphorylated glucommannanprotein fraction of its cell wall induce production of immune interfreon by human peripheral blood mononuclear cells. IRCS Med Sci 13: 1190, 1985.Google Scholar
  223. 218.
    Staebell M, Soli DR: Temporal and spatial differences in cell wall expansion during bud and mycelium formation in Candida albicans. J Gen Microbiol 131: 1467, 1985.PubMedGoogle Scholar
  224. 219.
    Sullivan PA, Chiew YY, Molloy C, Templeton MD, Shepherd MG: An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Can J Microbiol 29: 1514, 1983.PubMedCrossRefGoogle Scholar
  225. 220.
    Summers DF, Grollman AP, Hasenclever HF: Polysaccharide antigens of Candida cell wall. J Immunol 92: 491, 1964.PubMedGoogle Scholar
  226. 221.
    Sunayama H: Studies on the antigenic activities of yeasts. IV. Analysis of the antigenic determinant groups of the mannan of Candida albicans serotype A. Jpn J Microbiol 14: 27, 1970.PubMedGoogle Scholar
  227. 222.
    Sundstrom P, Kenny GE: Characterization of antigens specific to the surface of germ tubes of Candida albicans by immunofluorescence. Infect Immun 43: 850, 1984.PubMedGoogle Scholar
  228. 223.
    Sundstrom P, Kenny GE: Enzymatic release of germ-tube-specific antigens from cell walls of Candida albicans. Infect Immun 49: 609, 1985.PubMedGoogle Scholar
  229. 224.
    Sundstrom P, Nichols EJ, Kenny GE: Antigenic differences between mannoproteins of germ-tubes and blastospores of Candida albicans. Infect Immun 55: 616, 1987.PubMedGoogle Scholar
  230. 225.
    Sundstrom PM, Tam MR, Nichols EJ, Kenny GE: Antigenic differences in surface mannoproteins of Candida albicans as revealed by monoclonal antibodies. Infect Immun 56: 00, 1988.Google Scholar
  231. 226.
    Suzuki K, Okawa Y, Suzuki S, Suzuki M: Candidacidal effect of peritoneal exudate cells in mice administered with chitin or chitosan: the role of serine protease on the mechanism of oxygen-independent candidacidal effect. Microbiol Immunol 31: 375, 1987.PubMedGoogle Scholar
  232. 227.
    Suzuki S: Antigenic determinants, in Arnold WN (ed) Yeast Cell Envelopes: Biochemistry, Biophysics, and Ultrastructure (Vol 1). CRC Press, Boca Raton, 85, 1981.Google Scholar
  233. 228.
    Suzuki S, Fukazawa Y: Immunochemical characterization of Candida albicans cell wall antigens: specific determinant of Candida albicans serotype A mannan. Microbiol Immun 26: 387, 1982.Google Scholar
  234. 229.
    Suzuki S, Sunayama H: Studies on the antigenic activities of yeasts. II Isolation and inhibition assay of the oligosaccharides from acetolysate of mannan of Candida albicans. Jpn J Microbiol 12: 413, 1968.PubMedGoogle Scholar
  235. 230.
    Szaniszlo P, Jacobs CW, Geis PA: Dimorphism: morphological and biochemical aspects, in Howard DH (ed) Fungi Pathogenic for Human and Animals. Part A Marcel Dekker, New York, p 323, 1983.Google Scholar
  236. 231.
    Takaniiya H, Vogt A, Batsford S, Kuttin ES, Müller J: Further studies on the immunoelectronmicroscopic localisation of polysaccharide antigens on ultrathin sections of Candida albicans. Mykosen 28: 17, 1985.Google Scholar
  237. 232.
    Thieme TR, Ballou CE: Subunit structure of the phosphomanan from Kloeckera brevis yeast cell wall. Biochemistry 11: 1115, 1972.PubMedCrossRefGoogle Scholar
  238. 233.
    Tkacz JS, Lampen JO: Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun 65: 248, 1975.PubMedCrossRefGoogle Scholar
  239. 234.
    Tkacz JS, Lampen JO: Wall replication in Saccharomyces species: use of fluorescein-conjugated concanavalin A to reveal the site of mannan insertion. J Gen Microbiol 72: 243, 1972.PubMedGoogle Scholar
  240. 234a.
    Tojo M, Shibata N, Kobayashi M, Mikami T, Suzuki M, Suzuki S: Preparation of monoclonal antibodies reactive with beta 1–2 linked oligomannosyl residues in the phospho-mannan-protein complex of Candida albicans NIH B-792 strain. Clin Chem 34: 593, 1988.Google Scholar
  241. 234b.
    Tojo M, Shibata N, Mikami T, Suzuki M, Suzuki S: Participation of peptide moieties in adhesive behavior of antigenic mannans of Candida albicans to the plastic micro titer plate in enzyme-linked immunosorbent assay. Clin Chem 33: 1925, 1987.PubMedGoogle Scholar
  242. 235.
    Tokunaga J, Fujita T, Hattori A, Muller J: Scanning electron microscopic observation of immunoreactions on the cell surfce: analysis of Candida albicans cell wall antigens by the immunoferritin method, scanning electron microscopy/1976 (Part I), in Proceedings, Ninth Annual Scanning Electron Microscope Symposium. IIT Research Institute Chicago, 1976.Google Scholar
  243. 236.
    Tokunaga J, Tokunaga M, Egashira T: Electron microscopical studies on growing fungal cells. II. Cell wall formation in budding and germinating blastospores of genus Candida. Jpn J Bacteriol 24: 676, 1969.CrossRefGoogle Scholar
  244. 237.
    Tokunaga J, Tokunaga M, Egashira T: Electron microscopical studies on growing fungal cells. III. Germination ability of chlamydospores of Candida stellatoidea and Candida albicans, and their fine structures during germination. Jpn J Bacteriol 24: 683, 1969.CrossRefGoogle Scholar
  245. 238.
    Tokunaga M, Kusamichi M, Koike H: Ultrastructure of outermost layer of cell wall in Candida albicans observed by rapid-freezing technique. J Electron Microsc 35: 237, 1986.Google Scholar
  246. 239.
    Torosantucci A, Cassone A: Induction and morphogenesis of chlamydospores in an agerminative variant of Candida albicans. Sabouraudia 21: 49, 1983.PubMedCrossRefGoogle Scholar
  247. 240.
    Torres-Bauza LJ, Riggsby WS: Protoplast from yeast and mycelial forms of Candida albicans. J Gen Microbiol 119: 341, 1980.PubMedGoogle Scholar
  248. 241.
    Tronchin G, Poulain D, Biguet J: Cytochemical and ultrastructural studies of the cell wall of Candida albicans. I. Localization of mannan by means of concanavalin A on ultrathin sections. Arch Microbiol 123: 245, 1979.PubMedCrossRefGoogle Scholar
  249. 242.
    Tronchin G, Poulain D, Herbaut J, Biguet J: Cytochemical and ultrastructural studies of Candida albicans. II. Evidence for a cell wall cost using concanavalin A. J Ultrastruct Res 75: 50, 1981.CrossRefGoogle Scholar
  250. 243.
    Tronchin G, Poulain D, Herbaut J, Biguet J: Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin: fluorescence and ultrastructural studies. Eur J Cell Biol 26: 121, 1981.PubMedGoogle Scholar
  251. 244.
    Tronchin G, Poulain D, Vernes A: Cytochemical and ultrastructural studies of Candida albicans. III. Evidence for modifications of cell wall coat during adherence to human buccal epithelial cells. Arch Microbiol 139: 221, 1984.PubMedCrossRefGoogle Scholar
  252. 245.
    Tronchin G, Robert R, Bonali A, Senet JM: Immunocytochemical localization of in vitro binding of human fibrinogen to Candida albicans germ-tube and mycelium. Ann Inst Pasteur Microbiol 138: 177, 1987.PubMedCrossRefGoogle Scholar
  253. 246.
    Tsuchiya T, Taguchi M, Fukazawa Y, Shinoda T: Serological characterization of yeasts as an aid in identification and classification. Methods Microbiol 16: 76, 1984.Google Scholar
  254. 247.
    Valentin E, Herrero E, Pastor FI, Sentandreu R: Solubilization and analysis of mannoprotein molecules from the cell wall of Saccharomyces cerevisiae. J Gen Microbiol 130: 1419, 1984.Google Scholar
  255. 248.
    Vardinon N, Segal E: Suppressive action of Candida albicans on the immune response in mice. Exp Cell Biol 47: 275, 1979.PubMedGoogle Scholar
  256. 249.
    Venezia RA, Lachapelle RC: The use of ferritin-conjugated antibodies in the study of cell wall components of Candida albicans. Can J Microbiol 19: 1445, 1973.PubMedCrossRefGoogle Scholar
  257. 250.
    Villanueva JR, Notario V, Santos T, Villa TG: Beta-glucanases in nature: biochemistry and function of beta-glucanases in yeast, in Peberdy JF, Rose AH (eds) Microbial and Plant Protoplasts. Academic Press, London p 323, 1976.Google Scholar
  258. 251.
    Weinberg JB, Hibbs JB: Enhanced macrophage tumoricidal activity and tumor suppression or regression caused by heat-killed Candida albicans. J Natl Cancer Inst 63: 1273, 1979.PubMedGoogle Scholar
  259. 252.
    Williams DL, Cook JA, Hofman EO, Di Luzio NR: Protective effect of glucan in experimentally-induced candidiasis. J Reticuloendothel Soc 23: 479, 1978.PubMedGoogle Scholar
  260. 253.
    Williams JD, Topley N, Alobaidi HM, Harber MJ: Activation of human polymorphonuclear leucocytes by particulate zymosan is related to both its major carbohydrate components: glucan and mannan. Immunology 58: 117, 1986.PubMedGoogle Scholar
  261. 254.
    Wirz M, Lombardi G, Pugliese O, Morelli R, Piccolella E: A purified polysaccharide isolated from Candida albicans induces antibody response in vitro by human peripheral blood lymphocytes and discriminates between sera Antonio Cassone from normal and Candida albicans-infected individuals. Clin Immunol Immunopathol 33: 199, 1984.PubMedCrossRefGoogle Scholar
  262. 255.
    Wojdani A, Ghoneum M: In vivo augmentation of natural killer cell activity by Candida albicans. Int J Immunopharmacol 9: 827, 1987.PubMedCrossRefGoogle Scholar
  263. 256.
    Wright CD, Bowie JV, Gray GR, Nelson RD: Candidacidal activity of myeloperoxidase: mechanism of inhibitory influence of soluble cell wall mannan. Infect Immun 42: 76, 1983.PubMedGoogle Scholar
  264. 257.
    Wright CD, Herron MJ, Gray GR, Holmes, B, Nelson RD: Influence of yeast mannan on human neutrophil functions: inhibition of release of myeloperoxidase related to carbohydrate-binding property of the enzyme. Infect Immun 32: 731, 1981.PubMedGoogle Scholar
  265. 258.
    Yamaguchi H, Hiratani T, Baba M, Osumi M: Effect of aculeacin A, a wall-active antibiotic, on synthesis of the yeast cell wall. Microbiol Immunol 29: 609, 1985.PubMedGoogle Scholar
  266. 259.
    Yano K, Yamada T, Banno Y, Sekiya T, Nozawa Y: Modification of lipid composition in a dimorphic fungus, Candida albicans during the yeast cell to hypha transformation. Jpn J Med Mycol 23: 159, 1982.CrossRefGoogle Scholar
  267. 260.
    Yu RJ, Bishop CT, Cooper FP, Blank F, Hasenclever HF: Glucans from Candida albicans (serotype B) and from Candida parapsilosis. Can J Chem 45: 2264, 1967.CrossRefGoogle Scholar
  268. 261.
    Yu RJ, Bishop CT, Cooper FP, Hasenclever HF, Blank F: Structural studies of mannans from Candida albicans (serotypes A and B), Candida parapsilosis, Candida stellatoidea and Candida tropicalis. Can J Chem 45: 2205, 1967.CrossRefGoogle Scholar
  269. 262.
    Zlotnik H, Pilar Fernandez M, Bowers B, Cabib E: Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determins wall porosity. J Bacteriol 159: 1018, 1984.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Antonio Cassone

There are no affiliations available

Personalised recommendations