Skip to main content

A Statistical Theory of Time-Dependent Fracture for Cementitious Materials

  • Conference paper
Fracture of Concrete and Rock

Abstract

By considering pre-existing flaw size distribution and the slow crack growth characteristics of these flaws a statistical theory is developed for the time-dependent strength behaviour of cementitious materials. Theoretical fracture strength and lifetime predictions in pure and three-point bend cement paste specimens subjected to both constant stress rates and sustained stresses are presented. In addition, creep curves under sustained stresses can also be predicted from the statistical fracture theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mindess, S. and Nadeau, J.S., “Effect of loading rate on the flexural strength of cement and mortar”, Bull. Am. Ceram. Soc., 56, 429–430 (1977).

    Google Scholar 

  2. Nadeau, J.S., Mindess, S. and Hay, J.M., “Slow crack growth in cement paste”, J.Am.Ceram.Soc., 57, 51–54 (1974).

    Article  Google Scholar 

  3. Mindess, S., “Rate of loading effects on the fracture of cementious materials”, in Application of Fracture Mechanics to Cementitious Composites, S.P. Shah ed., Martinus Nijhoff Publ., The Netherlands, 617–636 (1985).

    Google Scholar 

  4. Wittman, F.H., “Influence of time on crack formation and failure of concrete”, in Application of Fracture Mechanics to Cementitious Composites, S.P. Shah ed., Martinus Nijhoff Publ., The Netherlands, 593–615 (1985).

    Google Scholar 

  5. Beaudoin, J.J., “Mechanisms of subcritical crack growth in Portland cement paste”, in Proc.Int.Conf. on Fracture Mechanics of Concrete, F.H. Wittmann ed., Lausanne, Switzerland, 1, 3–11 (1985).

    Google Scholar 

  6. Beaudoin, J.J., “Stress corrosion and sub-critical crack growth in Portland cement paste”, Cement and Concrete Research, to be published.

    Google Scholar 

  7. Baldie, K.D. and Pratt, P.L., “Crack growth in hardened cement paste”, to be published.

    Google Scholar 

  8. Tait, R.B., “Fatigue and fracture of cement mortar”, PhD Thesis, University of Cape Town, 1984.

    Google Scholar 

  9. Atkins, A.G. and Mai, Y.-W., Elastic and Plastic Fracture: metals, polymers, ceramics, composites, biological materials, Ellis Horwood/John Wiley, Chichester, UK, 1985, Chapter 5.

    Google Scholar 

  10. Hu, X.-Z., Cotterell, B., and Mai, Y.-W., “A statistical theory of fracture in a two-phase brittle material”, Proc. R. Soc, Lond. A401, 251–265 (1985).

    MathSciNet  Google Scholar 

  11. Weibull, W., “A statistical theory of the strength of materials”, Proc. 151, Ing. Veterskaps. Akad. Hanal, 1939.

    Google Scholar 

  12. Weibull, W., “A statistical distribution function of wide applicability”, J.Appl.Mech., 18, 293–297 (1951).

    MATH  Google Scholar 

  13. Hunt, R.A. and McCartney, L.N., “A new approach to Weibull’s statistical theoory of brittle fracture”, Int.J.Fract., 15, 365–375 (1979).

    Google Scholar 

  14. Evans, A.G., “Method for evaluating the time-dependent failure characteristics of brittle materials — and its application to polycrystalline alumina”, J.Mater.Sei., 7, 1137–1146 (1972).

    Article  Google Scholar 

  15. Mai, Y.-W. and Gurney, C., “Crack growth in mineral glass”, Phys. and Chem. of Glasses, 16, 70–72 (1975).

    Google Scholar 

  16. Williams, D.P. and Evans, A.G., “Simple method for studying slow crack growth”, J.Test.Eval., 1, 264–270 (1973).

    Article  Google Scholar 

  17. Higgins, D.D. and Bailey, J.E., “Fracture measurements on cement paste”, J.Mater.Sci., 11, 1995–2003 (1976).

    Article  Google Scholar 

  18. Eden, N.B. and Bailey, J.E., “On the factors affecting strength of Portland cement”, J.Mater.Sci., 19, 150–158 (1984).

    Article  Google Scholar 

  19. Diamond, S. and Mindess, S., “Scanning electron microscopic observations of cracking in Portland cement paste” in Proc. 7th Int. Congress on the Chemistry of Cement, Vol. 3, pp.VI-114–119, 1980, Paris.

    Google Scholar 

  20. Mai, Y.-W. and Lawn, B.R., “Crack stability and toughness in brittle materials”, Ann. Review Mater.Sci., 16, 415–439 (1986).

    Article  Google Scholar 

  21. Cotterell, B. and Mai, Y.-W., “Crack growth resistance curve and size effect in fracture of cement paste”, J.Mater.Sci. (1987), in press.

    Google Scholar 

  22. Mai, Y.-W. and Lawn, B.R., “rack-interface grain bridging as a fracture resistance mechanism in ceramics: II. Theoretical fracture mechanics model” J.Am.Ceram.Soc., 70,289–294 (1987).

    Article  Google Scholar 

  23. Fuller, E.R., Lawn, B.R. and Cook, R.F., “Theory of fatigue for brittle flaws originating from residual stress concentrations”, J.Am.Ceram.Soc, 66, 3214–321 (1983).

    Article  Google Scholar 

  24. Gonzalez, A.C., Multhopp, H., Cook, R.F., Lawn, B.R. and Freiman, S.W., “Fatigue properties of ceramics with natural and controlled flaws: a study on alumina”, in ASTM STP 844, 43–56 (1984).

    Google Scholar 

  25. Hu, X.-Z., Mai, Y.-W. and Cotterell, B., “Lifetime prediction of ceramic materials subjected to static loads”. J.Mater.Sci.Lett., 6, 462–464 (1987).

    Article  Google Scholar 

  26. Lawn, B.R., “Tne indentation crack as a model surface flaw”, Fracture Mechanics of Ceramics, R.C. Bradt et al eds., Plenum Press, N.Y., 5, 1–25 (1983).

    Google Scholar 

  27. Hu, X.-Z., Mai, Y.-W. and Cotterell, B., “A statistical fracture theory for cyclic fatigue of brittle materials” to be published.

    Google Scholar 

  28. Gurney, C. and Pearson, S., “Fatigue of mineral glass under static and cyclic loading”, Proc. R. Soc, Lond. A192, 538–544 (1948).

    Google Scholar 

  29. Krohn, D.A. and Hasselman, D.P.H., “Static and cyclic fatigue behaviour of a polycrystalline alumina”, J.Am.Ceram.Soc., 55, 208–211 (1972).

    Article  Google Scholar 

  30. Newman, K., “Concrete control tests as measures of the properties of concrete”, Proc Symp. Concrete Quality, Cement and Concrete Association, London, 120–138 (1964).

    Google Scholar 

  31. Weidman, G.W. and Williams, J.G., “Crazing and the creep behaviour of PMMA in methanol”, Polymer, 16, 921–924 (1975).

    Article  Google Scholar 

  32. Hu, X.-Z., Cotterell, B. and Mai, Y.-W., “Computer simulation models of fracture in concrete”, in Proc Int. Conf. on Fracture Mechanics of Concrete, F.H. Wittmann ed., Lausanne, Switzerland, 73–82 (1985).

    Google Scholar 

  33. Hu, X.-Z., Mai, Y.-W. and Cotterell, B., “A statistical time-dependent fracture theory for brittle materials”, submitted to J. Mech. Phys. & Solids.

    Google Scholar 

  34. Shah, S.P., “Fracture toughness of concrete”, presented at the Int. Conf. on Fracture of Concrete and Rock, SEM-RILEM, June 17–19, 1987, Houston, Texas.

    Google Scholar 

  35. Kendall, K. Private communication, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Hu, XZ., Mai, YW., Cotterell, B. (1990). A Statistical Theory of Time-Dependent Fracture for Cementitious Materials. In: Shah, S.P., Swartz, S.E. (eds) Fracture of Concrete and Rock. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3578-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3578-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96880-3

  • Online ISBN: 978-1-4612-3578-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics