Skip to main content

Fracture Toughness Determination of Rocks with Core-Based Specimens

  • Conference paper
Fracture of Concrete and Rock

Abstract

Rock and geomaterial specimens are usually extracted in circular cores. KIc derived from various core specimens is discussed. A newly developed fracture toughness test specimen, semi-circular in shape and contains an edge-crack, is elaborated. The fracture load and the fracture energy of a typical layered rock are measured with static tests, and the fracture toughness is determined using a stress intensity factor method, a compliance method and a J-integral based method. A minimum dimensional requirement is proposed for plane strain fracture toughness. Application of KIc in fragmentation modeling is illustrated. Mixed mode fracture specimen is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Standard Method of Test for Plane Strain Fracture Toughness in Metallic Materials, ASTM E399 — 81, Am. Soc. for Testing and Materials, New York (1981).

    Google Scholar 

  2. M. Wecharatana and S. P. Shah, Prediction of nonlinear fracture process zone in concrete, Journal of EMD of ASCE 109, 1231–1246 (1983).

    Article  Google Scholar 

  3. F. Ouchterlony, co-ordinator, Suggested Methods for Determining Fracture Toughness of Rock Materials, Int. Soc. Rock Mech. Commi. Testing Methods, 4th draft, June (1986).

    Google Scholar 

  4. L. M. Barker, A simplified method for measuring plane strain fracture toughness, Engng. Fracture Mech. 9, 361–369 (1977).

    Article  MathSciNet  Google Scholar 

  5. R. J. Clifton, E. R. Simonson, A. H. Jones, and S. J. Green, Determination of the critical stress intensity factor KIc from internally -Pressurized thick-walled vessels, Exper. Mech. 16, 233–238 (1976).

    Article  Google Scholar 

  6. F. Ouchterlony, A new core specimen for the fracture toughness testing of rock, Swedish Detonic Research Foundation Rep., DS 1980: 17, Stockholm, Sweden (1980).

    Google Scholar 

  7. F. Ouchterlony and Sun Zongqi, New methods of measuring fracture toughness on rock cores, Swedish Detonic Research Foundation Rep, DS 1983: 10, Stockholm, Sweden (1983).

    Google Scholar 

  8. K. P. Chong and M. D. Kuruppu, New specimen for fracture toughness determination of rock and other materials, Int. J. Fract. 26, R 59–R 62 (1984).

    Article  Google Scholar 

  9. K. P. Chong and J. W. Smith, eds, Mechanics of Oil Shale, Elsevier (1984).

    Google Scholar 

  10. E. R. Simonson, A. S. Abou-Sayed and R. J. Clifton, Containment of massive hydraulic fractures, SPE paper No. 6089, 51st Annual Fall Meeting of SPE of AIME (1976).

    Google Scholar 

  11. H. P. Rossmanith, Rock Fracture Mechanics, Springer — Verlag, Wien, New York (1983).

    Google Scholar 

  12. F. Ouchterlony, Fracture Mechanics applied to rock blasting, Proceedings 3rd Int. Congress of the ISRM, Denver, Colorado, 2-B, 1377–1383 (1974).

    Google Scholar 

  13. K. P. Chong, P.M. Hoyt, J. W. Smith and B.Y. Paulsen, Effects of strain rate on oil shale fracturing, Int. J. Rock Mech. Min. Sci 17, 35–43 (1980).

    Google Scholar 

  14. R A. Schmidt, Fracture toughness of limestone, Exper. Mech. 16, 161–167 (1976).

    Article  Google Scholar 

  15. P.J Hommert, ed., Oil Shale Program Quarterly Reports, October, 1983 September, 1984, Sandia National Laboratories Reports, SAND84-1561 and SAND85-1170 Albuquerque, August (1985).

    Google Scholar 

  16. J. S. Kuszmaul, Numerical modeling of oil shale fragmentation experiments, Proceedings 11th Annual Society of Explosives Engineers Conf., C. S. Konya, ed., San Diego, California (1985).

    Google Scholar 

  17. M. E. Kipp, D.E. Grady and E. P. Chen, Strain-rate dependent fracture initation, Int. J. Fract. 16, 471–478 (1980).

    Article  Google Scholar 

  18. M. D. Kuruppu and K. P. Chong, New specimens for modes I and II fracture investigations of geomaterials, Proceedings Soc. Exp. Mech, Spring Conf., New Orleans, U. S. A., 31–38, June (1986).

    Google Scholar 

  19. K. P. Chong, J. W. Smith, E. S. Borgman, Tensile strengths of Colorado and Utah oil shales, J. of Energy, AIAA, Vol. 6, No. 2, 81–85, March/Apr. (1982).

    Article  Google Scholar 

  20. K. P. Chong, J. P. Turner and G. F. Dana, Strain-rate effects on the mechanical properties of Utah oil shale, Proceedings Int. Symp. Mechanical Behavior Structural Media, Ottawa, Canada, 431–446 (1981).

    Google Scholar 

  21. K. P. Chong, K. Uenishi, J W. Smith and A. C. Munari, Non-linear three dimensional mechanical characterization of Colorado oil shale, Int. J. Rock Mech. Min. Sci 17, 339–347 (1980).

    Article  Google Scholar 

  22. J. W. Smith, Relationship between rock density and volume of organic matter in oil shales, US DOE report ERDA/LERC/RI-76/6. Laramie, Wyoming (1976).

    Google Scholar 

  23. J. R. Dixon and J. S. Strannigan, Determination of energy release rates and stress intensity factors by the finite element method, J. Strain Analysis 7, 125–131 (1972).

    Article  Google Scholar 

  24. C. W. Woo and M. D. Kuruppu, Use of finite element method for determining stress intensity factors with a conic-section simulation model of crack surface, Int. J. Fract. 20, 163–178 (1982).

    Article  Google Scholar 

  25. P. C. Paris and G. C. Sih, Stress analysis of cracks, in Symposium on Fracture Toughness Testing and Its Application, ASTM STP 381, 30–38 (1970).

    Google Scholar 

  26. J. B. Sellers, G. R. Haworth and P. G. Zambas, Rock mechanics research on oil shale mining, Transactions Soc. Min. Engineers of AIME 252, 222–232 (1972).

    Google Scholar 

  27. J. R. Rice, A path-independent integral and the approximate analysis of strain concentration by notches and cracks, Transactions ASME J. App. Mech 35, 379–386 (1968).

    Article  Google Scholar 

  28. C. P. Cherepanov, Crack propagation in continuous media, J. App. Math. Mech (PMM) 31, 476–488 (1967).

    Google Scholar 

  29. J. R. Rice, P. C. Paris and J. G. Merkle, Some further results of J-integral analysis and estimates, in Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, 231–245 (1973).

    Google Scholar 

  30. L. S. Costin, Static and dynamic fracture behavior of oil shale, in Fracture Mechanics Methods for Ceramics, Rocks and Concrete, ASTM STP 745, 169–184 (1981).

    Google Scholar 

  31. C. Young, N. C. Patti and B. C. Trent, Stratigraphic variations in oil shale fracture properties, US DOE Report of Investigation, DOE/LC/RI-82-5, Laramie, Wyoming (1982).

    Google Scholar 

  32. V. C. Li, Fracture resistance parameters for cementitious materials and their experimental determinations, Applications of Fracture Mechanics to Cementitious Composites, S. P. Shah, ed., Martinus Nijhoff Publ., 431–449 (1985).

    Google Scholar 

  33. Y. S. Jenq and S. P. Shah, Nonlinear fracture parameters for cement based composites: theory and experiments, Applications of Fracture Mechanics to Cementitious Composites, S. P. Shah, ed., Martinus Nijhoff Publ. (1985).

    Google Scholar 

  34. D. Grady, The mechanics of fracture under high-rate stress loading, in Mechanics of Geomaterials, John Wiley & Sons Ltd., (1985).

    Google Scholar 

  35. L. M. Taylor, E. P. Chen, and J. S. Kuszmaul, Microcrack-induced damage accumulation in brittle rock under dynamic loading, Computer Methods in Applied Mechanics and Engineering, Vol. 55, No. 3, 301–320, (1986).

    Article  MATH  Google Scholar 

  36. L. M. Taylor and D. P. Flanagan, PRONTO2D--A Two-Dimensional Transient Solid Dynamics Program, in preparation.

    Google Scholar 

  37. E. Gorham-Bergeron, private communication, (1985).

    Google Scholar 

  38. J. S. Kuszmaul, “A Technique for Predicting Fragmentation and Fragment Sizes Resulting from Rock Blasting”, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Chong, K.P., Kuruppu, M.D., Kuszmaul, J.S. (1989). Fracture Toughness Determination of Rocks with Core-Based Specimens. In: Shah, S.P., Swartz, S.E. (eds) Fracture of Concrete and Rock. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3578-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3578-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96880-3

  • Online ISBN: 978-1-4612-3578-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics