Skip to main content

Mathematical Modelling of Damage Evolution in Concrete and FRC-Materials

  • Conference paper
Fracture of Concrete and Rock

Abstract

The present paper deals with constitutive modelling of materials whose behaviour is governed by the nucleation and growth of microcracks. The modelling is based on composite material theory and continuum damage mechanics. The theoretical predictions for fibre reinforced cementitious materials are discused and compared with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z.P. Bažant. Mechanics of distributed cracking. Appl. Mech. Rev., 39, 675–705, (1986).

    Article  Google Scholar 

  2. S. Ziegeldorf. Phenomenological aspects of the fracture of concrete. In Fracture Mechanics of Concrete, ed. F.H. Wittmann. Elsevier Science Publishers, Amsterdam. Pp. 31–41, (1983).

    Google Scholar 

  3. L.J. Walpole. Elastic behavior of composite materials: Theoretical foundations. Adv. Appl. Mech., 21, 169–242, (1981).

    Article  MATH  Google Scholar 

  4. Z. Hashin. Analysis of Composite Materials — A Survey. J. Appl. Mech., 50, 481–505, (1983).

    Article  MATH  Google Scholar 

  5. N. Laws, G.J. Dvorak, and M. Hejazi. Stiffness changes in unidirectional composites caused by crack systems. Mech. of Mater., 2, 123–137, (1983).

    Article  Google Scholar 

  6. V.M. Levin. Determination of effective elastic moduli of composite materials. Dokl. Akad. Nauk. SSSR, 220, 1042–1045, (1975). (Sov. Phys. Dokl., 20, 147–148, (1975)).

    Google Scholar 

  7. J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion and related problems. Pro. R. Soc. Lond, A. 241, 376–396, (1957).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Laws. A note on interaction energies associated with cracks in anisotropic media. Phil. Mag., 36, 367–372, (1977).

    Article  Google Scholar 

  9. N. Laws. The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. J. Elasticity, 1, 91–97, (1977).

    Article  MathSciNet  Google Scholar 

  10. N. Laws and R. McLaughlin. Self-consistent estimates for the viscoelastic creep compliances of composite materials. Proc. R. Soc. Lond. A. 359, 251–273, (1978).

    Article  MathSciNet  Google Scholar 

  11. H. Stang. Strength of composite materials with small cracks in the matrix. Int. J. Solids Structures, 22, 1259–1277, (1986).

    Article  MATH  Google Scholar 

  12. H. Stang. A Double inclusion model for microcrack arrest in fibre reinforced brittle materials. J. Mech. Phys. Solids, 35, 325–342, (1987).

    Article  MATH  Google Scholar 

  13. D. Krajcinovic. Continuous damage mechanics revisited: Basic concepts and definitions. J. Appl. Mech., 52, 829–834, (1985).

    Article  Google Scholar 

  14. J.J. Marigo. Modelling of brittle and fatigue damage for elastic material by growth of microvoids. Eng. Frac. Mech., 21, 861–875, (1985).

    Article  Google Scholar 

  15. H. Krenchel and S.P. Shah. Synthetic fibres for tough and durable concrete. In Developments in fibre reinforced cement and concrete, Rilem Symposium, FRC 86, Vol. 1, (1986).

    Google Scholar 

  16. A.G. Evans and R.M. Cannon. Toughening of brittle solids by martensitic transformations. Acta Metall., 34, 761–800, (1986).

    Article  Google Scholar 

  17. H. Horii and S. Nemat-Nasser. Overall moduli of solids with microcracks: load-induced anisotropy. J. Mech. Phys. Solids, 31, 155–171, (1983).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Stang, H. (1989). Mathematical Modelling of Damage Evolution in Concrete and FRC-Materials. In: Shah, S.P., Swartz, S.E. (eds) Fracture of Concrete and Rock. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3578-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3578-1_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96880-3

  • Online ISBN: 978-1-4612-3578-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics