Advertisement

Effects of Preimplantation Processing on Bioprosthetic and Biologic Cardiac Valve Morphology

  • Stephen L. Hilbert
  • Victor J. Ferrans
  • Michael Jones

Abstract

The evolution of cardiac valve substitutes for the management of valvular heart disease has been taking place for approximately a quarter-century. A heterogeneous group of components, including pyrolytic carbon, polymeric, and tissue-derived materials, have been configured into mechanical, polymeric, bioprosthetic, and biologic valve designs.1–11 For the purpose of this review, however, only tissue-derived xenograft and allograft cardiac Valves are discussed.

Keywords

Aortic Valve Heart Valve Free Edge Cardiac Valve Collagen Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sebening F, Klovekorn WP, Meisner H, Struck E (eds): Bioprosthetic Cardiac Valves. Munich: Deutsches Herzzentrum, München, 1979.Google Scholar
  2. 2.
    Lefrak EA, Starr A (eds): Cardiac Valve Prostheses. New York: Appleton-Century-Crofts, 1979.Google Scholar
  3. 3.
    Ionescu MI (ed): Tissue Heart Valves. London: Butterworth, 1979.Google Scholar
  4. 4.
    DeBakey ME: Advances in Cardiac Valves: Clinical Perspectives. New York: Yorke, 1983.Google Scholar
  5. 5.
    Cohn LH, Gallucci V (eds): Cardiac Bio-prostheses. New York: Yorke, 1982.Google Scholar
  6. 6.
    Morse D, Steiner RM, Fernandez I (eds): Guide to Prosthetic Cardiac Valves. New York: Springer-Verlag, 1985.Google Scholar
  7. 7.
    Bodnar E, Yacoub M (eds): Biologic and Bio-prosthetic Valves. New York: Yorke, 1986.Google Scholar
  8. 8.
    Bjork VO, Cullhed I, Lodin H: Aortic valve prosthesis (Teflon): two year follow-up. J Thorac Cardiovasc Surg 45: 635–644, 1963.PubMedGoogle Scholar
  9. 9.
    Braunwald NS, Morrow AG: A late evaluation of flexible Teflon prostheses utilized for total aortic valve replacement: postoperative clinical, hemodynamic and pathologic assessments. J Thorac Cardiovasc Surg 49: 485–496, 1965.PubMedGoogle Scholar
  10. 10.
    Wisman CB, Pierce WS, Donachy JH, et al: A polyurethane trileaflet cardiac valve prosthesis: in vitro and in vivo studies. Trans Am Soc Artif Intern Organs 28: 164–168, 1982.PubMedGoogle Scholar
  11. 11.
    Hilbert SL, Ferrans VJ, Tomita Y, et al: Evaluation of explanted polyurethane trileaflet cardiac valve prostheses. J Thorac Cardiovasc Surg 94: 419–429, 1987.PubMedGoogle Scholar
  12. 12.
    Gabbay S, Frater RWM: The unileaflet heart valve bioprosthesis: new concept. In Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 411–424.Google Scholar
  13. 13.
    Bodnar E, Bowden NL, Drury PJ, et al: Bicuspid mitral bioprosthesis. Thorax 36: 45–51, 1981.PubMedCrossRefGoogle Scholar
  14. 14.
    Black MM, Drury PJ, Tindale WB, Lawford PV: The Sheffield bicuspid valve: concept, design and in vitro and in vivo assessment. In Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 709–717.Google Scholar
  15. 15.
    Zerbini EJ, Puig LB: Experience with dura-ma-ter allograft: long term results. In Sebening F, Klovekorn WP, Meisner H, Struck E (eds): Bioprosthetic Cardiac Valves. Munich: Deutsches Herzzentrum München, 1979, pp. 179–197.Google Scholar
  16. 16.
    Senning A: Fascia lata replacement of aortic valves. J Thorac Cardiovasc Surg 54: 465–470, 1967.PubMedGoogle Scholar
  17. 17.
    Rodewald G, Akrami R, Bantea C, et al: Long-term follow-up of aortic valve replacement using fascia-lata-graft according to Ionescu. In Sebening F, Klovekorn WP, Meisner H, Struck E (eds): Bioprosthetic Cardiac Valves. Munich: Deutsches Herzzentrum München, 1979, pp. 161–177.Google Scholar
  18. 18.
    Petch M, Somerville J, Ross DN, et al: Replacement of the mitral valve with autologous fascia lata. Br Heart J 36: 177–181, 1974.PubMedCrossRefGoogle Scholar
  19. 19.
    Bodnar E, Ross DN: Mode of failure in 226 explanted biologic and bioprosthetic valves. In Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 401–407.Google Scholar
  20. 20.
    Silver MD, Hudson REB, Trimble AS: Morpho-logic observations on heart valve prostheses made of fascia lata. J Thorac Cardiovasc Surg 70: 360–366, 1975.PubMedGoogle Scholar
  21. 21.
    Woodroof EA: The chemistry and biology of aldehyde treated tissue heart valve xenografts. In Ionescu MI (ed): Tissue Heart Valves. London: Butterworth, 1979, pp. 347–362.Google Scholar
  22. 22.
    Cheung DT, Perelman N, Ko EC, Nimni ME: Mechanism of crosslinking of proteins by glutaraldehyde. III. Reaction with collagen in tissues. Connect Tissue Res 13: 109–115, 1985.PubMedCrossRefGoogle Scholar
  23. 23.
    Cheung DT, Nimni ME: Mechanism of crosslinking of proteins by glutaraldehyde. II. Reaction with monomelic and polymeric collagen. Connect Tissue Res 10: 201–216, 1982.PubMedCrossRefGoogle Scholar
  24. 24.
    Broom ND: Simultaneous morphologic and stress-strain studies of fibrous components in wet heart valve leaflet tissue. Connect Tissue Res 6: 37–50, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Broom N, Christie GW: The structure/function relationship of fresh and glutaraldehyde-fixed aortic valve leaflets. In Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 476–491.Google Scholar
  26. 26.
    Gavilanes JG, Gonzalez de Buitrago G, Lizarbe MA, et al: Stabilization of pericardial tissue by glutaraldehyde. Connect Tissue Res 13: 37–44, 1984.PubMedCrossRefGoogle Scholar
  27. 27.
    Sade RM, Greene WB, Kurtz SM: Structural changes in a procine xenograft after implantation for 105 months. Am J Cardiol 44: 761–766, 1979.PubMedCrossRefGoogle Scholar
  28. 28.
    O’Brien MF, Clarebrough JK: Heterograft aortic valve transplantatioin for human valve disease. Med J Aust 2: 228–230, 1966.PubMedGoogle Scholar
  29. 29.
    O’Brien MF: Heterologous replacement of the aortic valve. In Ionescu MI, Ross DN, Woller GH (eds): Biological Tissue and Heart Valve Replacement. London: Butterworth, 1972, pp. 445–466.Google Scholar
  30. 30.
    Buch WS, Kosek JC, Angell WW, Shumway SE: Deterioration of formalin-treated aortic valve heterografts. J Thorac Cardiovasc Surg 60: 673–682, 1970.PubMedGoogle Scholar
  31. 31.
    Dubiel WT, Johansson L, Willen R: Late changes in formalin-treated porchine aortic heterografts replacing human mitral valves. Scand J Thorac Cardiovasc Surg 9: 16–26, 1975.Google Scholar
  32. 32.
    Bortolotti V, Milano A, Mazzucco A, et al: Lon-gevity of the formaldehyde-preserved hancock porcine heterograft. J Thorac Cardiovasc Surg 84: 451–453, 1982.PubMedGoogle Scholar
  33. 33.
    Ferrans VJ, Spray TL, Billingham ME, Roberts WC: Structural changes in glutaraldehyde-treated porcine heterografts used as substitute cardiac valves: transmission and scanning electron microscopic observation in 12 patients. Am J Cardiol 41: 1159–1184, 1978.PubMedCrossRefGoogle Scholar
  34. 34.
    Yarbrough JW, Roberts WC, Reis RL: Structural alterations in tissue cardiac valves implanted in patients and in calves. J Thorac Cardiovasc Surg 65: 364–375, 1973.PubMedGoogle Scholar
  35. 35.
    Broom ND, Thomson FJ: Influence of fixation conditions on the performance of glutaraldehyde-treated porcine aortic valves: towards a more scientific basis. Thorax 34: 166–176, 1979.PubMedCrossRefGoogle Scholar
  36. 36.
    Swanson WM, Clark RE: Dimensions and geo- metic relationships of the human aortic valve as a function of pressure. Circ Res 35: 871–882, 1974.PubMedGoogle Scholar
  37. 37.
    Brewer RJ, Mentzer RM, Deck JD, et al: An in vivo study of the dimensional changes of the aortic valve leaflets during the cardiac cycle. J Thorac Cardiovasc Surg 74: 645–650, 1977.PubMedGoogle Scholar
  38. 38.
    Deck JD, Thubrikar MJ, Schneider PJ, Nolan SP: Structure, stress and tissue repair in aortic valve leaflets. Cardiovasc Res 22: 7–16, 1988.PubMedCrossRefGoogle Scholar
  39. 39.
    Broom ND: An in vitro study of mechanical fatigue in glutaraldehyde-treated procine aortic valve tissues. Biomaterials 1: 3–8, 1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Hilbert SL, Ferrans VJ, Swanson WM: Optical methods for the nondestructive evaluation of collagen morphology in bioprosthetic heart valves. J Biomed Mater Res 20:1411bioprosthetie1421,1986.Google Scholar
  41. 41.
    Zerbini E J, Puig LB: The dura mater allograft valve. In Ionescu MI (ed): Tissue Heart Valves. London: Butterworth, 1979, pp. 253–301.Google Scholar
  42. 42.
    Puig LB, Verginelli G, Iryia K, et al: Homologous dura mater cardiac valves: study of 533 surgical cases. J Thorac Cardiovasc Surg 69: 722–728, 1975.PubMedGoogle Scholar
  43. 43.
    Centers for Disease Control: Rapidly progressive dementia in a patient who received a cadaveric dura mater graft. MMWR 36: 49–50, 55, 1987.Google Scholar
  44. 44.
    Barnhart GR, Jones M, Ishihara T, et al: Degeneration and calcification of bioprosthetic cardiac valves: bioprosthetic tricuspid valve implantation in sheep. Am J Pathol 106: 136–139, 1982.PubMedGoogle Scholar
  45. 45.
    Arbustini E, Jones M, Moses RD, et al: Modifi-cation by the Hancock T6 process of calcification of bioprosthetic cardiac valves implanted in sheep. Am J Cardiol 53: 1388–1396, 1984.PubMedCrossRefGoogle Scholar
  46. 46.
    Jones M, Eidbo EE, Walters SM, et al: Effects of two types of preimplantation processes on calcification of bioprosthetic valves. In Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 451–459.Google Scholar
  47. 47.
    Fishbein MC, Levy RJ, Ferrans VJ, et al: Calcifi-cation of cardiac valve bioprostheses: biochemical, histologic and ultrastructural observations in a subcutaneous implantation model system. J Thorac Cardiovasc Surg 83: 602–609, 1982.PubMedGoogle Scholar
  48. 48.
    Schoen FJ, Levy RJ, Nelson AC, et al: Onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest 52: 523–532, 1985.PubMedGoogle Scholar
  49. 49.
    Schoen FJ, Tsao JW, Levy RJ: Calcification of bovine pericardium used in cardiac valve bio-prostheses: implication for the mechanism of bioprosthetic tissue mineralization. Am J Pathol 123: 134–145, 1986.PubMedGoogle Scholar
  50. 50.
    Thiene G, Arbustini E, Bortolotti V, et al: Pathologic substrates of porcine valve dysfunction. In Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 378–400.Google Scholar
  51. 51.
    Schoen FJ, Hobson CE: Anatomic analysis of removed prosthetic heart valves: causes of failure in 33 mechanical valves and 58 bioprostheses, 1980 to 1983. Hum Pathol 16: 549–559, 1985.PubMedCrossRefGoogle Scholar
  52. 52.
    Schoen FJ, Kujovich JL, Levy RJ, St John Sutton M: Bioprosthetic valve failure. Cardiovasc Clin 18: 289–317, 1987.Google Scholar
  53. 53.
    Gallucci V, Bortolotti U, Milano A, et al: The Hancock porcine valve 15 years later: an analysis of 575 patients. In Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 91–97.Google Scholar
  54. 54.
    Milano A, Bortolotti V, Talenti E, et al: Calcific degeneration as the main course of porcine bioprosthetic valve failure. Am J Cardio 53: 1066–1070, 1984.CrossRefGoogle Scholar
  55. 55.
    Ferrans VJ, Boyce SW, Billingham ME, et al: Calcific deposits in porcine bioprostheses: structure and pathogenesis. Am J Cardiol 46: 721–734, 1980.PubMedCrossRefGoogle Scholar
  56. 56.
    Valente M, Bortolotti U, Thiene G: Ultrastructural substrates of dystrophic calcification in porcine bioprosthetic valve failure. Am J Pathol 119: 12–21, 1985.PubMedGoogle Scholar
  57. 57.
    Carpentier A, Lemaigre G, Robert L, et al: Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovasc Surg 58: 467–483, 1969.PubMedGoogle Scholar
  58. 58.
    Dunn JM, Marmon L: Mechanisms of calcification of tissue valves. Cardiol Clin 3: 385–396, 1985.Google Scholar
  59. 59.
    Sanders SP, Levy RJ, Freed MD, et al: Use of Hancock porcine xenografts in children and adolescents. Am J Cardiol 46: 429–438, 1980.PubMedCrossRefGoogle Scholar
  60. 60.
    Silver MS, Pollock J, Silver MD, et al: Calcification in porcine xenograft valves in children. Am J Cardiol 45: 685–689, 1980.PubMedCrossRefGoogle Scholar
  61. 61.
    Gallueci V, Bortolotti U, Milano A, et al: Isolated mitral valve replacement with the Hancock bioprosthesis: a 13-year appraisal. Ann Thorac Surg 38: 571–577, 1984.CrossRefGoogle Scholar
  62. 62.
    Oyer PE, Miller DC, Stinson EB, et al: The performance of the Hancock bioprosthetic valve over an IIV2 year follow-up period: a perliminary report. In Duran C, Angell WW, Johnson AD, Oury JH (eds): Recent Progress in Mitral Heart Valve Disease. London: Butterworth, 1984, pp. 244–251.Google Scholar
  63. 63.
    Magilligan DJ Jr, Lewis JW Jr, Tilley B, Peterson E: The porcine bioprosthetic valve: twelve years later. J Thorac Cardiovasc Surg 89: 499–507, 1985.PubMedGoogle Scholar
  64. 64.
    Gallo I, Nistal F, Artinano E: Six- to ten-year follow-up of patients with the Hancock cardiac bioprosthesis: incidence of primary tissue failure. J Thorac Cardiovasc Surg 92: 14–20, 1986.PubMedGoogle Scholar
  65. 65.
    Foster AH, Greenberg GJ, Underhill DJ, et al: Intrinsic failure of Hancock mitral bio-prostheses: 10- to 15-year experience. Ann Thorac Surg 44: 568–577, 1987.PubMedCrossRefGoogle Scholar
  66. 66.
    Brofman PR, Carvalho RG, Ribeiro EJ, et al: Dura mater bioprostheses in young patients. In Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 265–272.Google Scholar
  67. 67.
    Ferrans VJ, Boyce SW, Billingham ME, et al: Infection of glutaraldehyde-preserved porcine valve heterografts. Am J Cardiol 43: 1123–1136, 1979.PubMedCrossRefGoogle Scholar
  68. 68.
    Ferrans VJ, IshiharaT, Jones M, et al: Pathogenesis and stages of bioprosthetic infection. In Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 346–361.Google Scholar
  69. 69.
    Levy RJ, Schoen FJ, Sherman FS, et al: Calcification of subcutaneously implanted type I collagen sponges. Am J Pathol 122: 71–82, 1986.PubMedGoogle Scholar
  70. 70.
    Golomb G, Schoen FJ, Smith MS, et al: The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol 127: 122–130, 1987.PubMedGoogle Scholar
  71. 71.
    Harasake H, Nose Y, McMahon JT, et al: Calcification in blood pumps. In: Devices and Technology Branch Contractors Meeting 1987, Program. Bethesda: Division of Heart and Vascular Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services, 1987.Google Scholar
  72. 72.
    Van Buskirk JJ, Kirsch WM, Kleyer DL, et al: Aminomalonie acid: identification in E. coli and atherosclerotic plaque. Proc Natl Acad Sci USA 81: 722–725, 1984.PubMedCrossRefGoogle Scholar
  73. 73.
    Koch TH, Bohemier D, Wheelan P, et al: Aminomalonie acid and the calcification of protein. In: Devices and Technology Branch Contractors Meeting 1987, Program. Bethesda: Division of Heart and Vascular Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services, 1987.Google Scholar
  74. 74.
    Lian JB, Skinner M, Glimcher MJ, Gallop P: The presence of 7-carboxyglutamic acid in the proteins associated with ectopic calcification. Biochem Biophys Res Commun 73: 349–355, 1976.PubMedCrossRefGoogle Scholar
  75. 75.
    Levy RJ, Schoen FJ, Levy JT, et al: Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am J Pathol 113: 143–155, 1983.PubMedGoogle Scholar
  76. 76.
    Levy RJ, Zenker JA, Lian JB: Vitamin K-depen- dent calcium binding poteins in aortic valve calcification. J Clin Invest 65: 563–566, 1980.PubMedCrossRefGoogle Scholar
  77. 77.
    Levy RJ, Zenker JA, Bernhard WF: Porcine bioprosthetic valve calcification in bovine left ventricle-aorta shunts: studies of the depositionof vitamin K-dependent proteins. Ann Thorac Surg 36: 187–192, 1983.PubMedCrossRefGoogle Scholar
  78. 78.
    Bick RL: Anticoagulant and antiplatelet therapy. In Murano G, Bick RL (eds): Basic Concepts of Hemostasis and Thrombosis. Boca Raton: CRC Press, 1980, pp. 245–258.Google Scholar
  79. 79.
    Stein PD, Riddle JM, Kemp SR, et al: Effect of warfarin on calcification of spontaneously de-generated porcine bioprosthetic valves. J Thorac Cardiovasc Surg 90: 119–125, 1985.PubMedGoogle Scholar
  80. 80.
    Carpentier A, Nashef A, Carpentier S, et al: Techniques for prevention of calcification of valvular bioprostheses. Circulation 70 (suppl I): I165–I168, 1984.Google Scholar
  81. 81.
    Lentz DJ, Pollock EM, Olsen DB, et al: Inhibition of mineralization of glutaraldehyde-fixed Hancock bioprosthetic heart valves. In Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 306–319.Google Scholar
  82. 81.
    Lentz DJ, Pollock EM, Olsen DB, et al: Inhibition of mineralization of glutaraldehyde-fixed Hancock bioprosthetic heart valves. In Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 306–319.Google Scholar
  83. 83.
    Dmitrovsky E, Boskey AL: Calcium-acidic phos- pholipid-phosphate complexes in human atherosclerotic aortas. Calcif Tissue Int 37: 121–125, 1985.PubMedCrossRefGoogle Scholar
  84. 84.
    Gasser AB, Morgan DB, Fleisch HA, Richelle LJ: The influence of two diphosphonates on calcium metabolism in rats. Clin Sci 43: 31–45, 1972.PubMedGoogle Scholar
  85. 85.
    Meyer JL, Nancollas GH: The influence of multidentate organic diphosphonates on crystal growth of hydroxy apatite. Calcif Tissue Res 13: 265–303, 1973.CrossRefGoogle Scholar
  86. 86.
    Lamson ML, Fox JL, Higuchi WJ: Calcium and 1-hydroxyethylidene-l, 1-diphosphonic acid: polynuclear complex formation in physiological range of pH. Int J Pharm 21: 143–154, 1966.CrossRefGoogle Scholar
  87. 87.
    Levy RJ, Hawley MA, Schoen FJ, et al: Inhibition by diphosphonate compounds of calcification of porcine bioprosthetic heart valve cusps implanted subcutaneously in rats. Circulation 71: 349–356, 1985.PubMedCrossRefGoogle Scholar
  88. 88.
    Schoen FJ, Levy RJ: Pathophysiology of bio-prosthetic heart valve calcification. In: Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 418–441.Google Scholar
  89. 89.
    Levy RJ, Schoen FJ, Lund SA, Smith MS: Prevention of leaflet calcification of bioprosthetic heart valves with diphosphonate injection therapy: experimental studies of optimal dosages and therapeutic durations. J Thorac Cardiovasc Surg 94: 551–557, 1987.PubMedGoogle Scholar
  90. 90.
    Levy RJ, Wolfrum J, Schoen FJ, et al: Inhibition of calcification of bioprosthetic heart valves by local controlled release diphosphonate. Science 228: 190–192, 1985.PubMedCrossRefGoogle Scholar
  91. 91.
    Golomb G, Langer R, Schoen FJ, et al: Controlled release diphosphonate to inhibit bioprosthetic heart valve calcification: dose response and mechanistic studies. J Contr Rel 4: 181–194, 1986.CrossRefGoogle Scholar
  92. 92.
    Levy RJ, Amidon G, Johnston T, Schoen FJ: Cardiovascular calcification: pathophysiology and treatment. In: Devices and Technology Branch Contractors Meeting, 1987. Program. Bethesda: Division of Heart and Vascular Diseases, National Heart, Lung and Blood Institutes, National Institutes of Health, Department of Health and Human Services, 1987, p. 142.Google Scholar
  93. 93.
    Urist MR, Adams JM: Effects of various blocking agents upon local mechanisms of calcification. Arch Pathol 81: 325–342, 1966.PubMedGoogle Scholar
  94. 94.
    Carpentier A, Nashef A, Carpentier S, et al: Prevention of tissue valve calcification by chemical techniques. In: Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 320–327.Google Scholar
  95. 95.
    Menasche P, Hue A, Lavergne A, et al: Selective blockade of collagen-calcium binding sites: new process to decrease bioprosthetic valvular calcifi-cation. In Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 478–483.Google Scholar
  96. 96.
    Golomb G, Levy RJ: Prevention of calcification of glutaraldehyde-treated biomaterials by charge modification. Transactions of the Society for Biomaterials, 1987, p. 108.Google Scholar
  97. 97.
    Tsao JW, Schoen FJ, Shanker R, et al: Retardation of bovine pericardial bioprosthetic tissue calcification by a physiologic mineralization inhibitor, phosphoeitrate, administered locally. Transactions of the Society for Biomaterials, 1987, p. 144.Google Scholar
  98. 98.
    Schryer PJ, Tomasek FR, Starr JA, Wright JTM: Anticalcification effect of glutaraldehyde-pre- served valve tissue stored for increasing time in glutaraldehy de. In Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 471–477.Google Scholar
  99. 99.
    Koorajian S, Frugard G, Stegwell MJ: Sterilization of tissue valves. In Sebening F, Klovekorn WP, Meisner H, Struck E (eds): Bioprosthetic Cardiac Valves. Munich: Duetsches Herzzent-rum München, 1979, pp. 373–378.Google Scholar
  100. 100.
    Centers for Disease Control: Isolation of mycobacteria species from porcine heart valve prostheses. MMWR 26: 42–43, 1977.Google Scholar
  101. 101.
    Laskowski LF, Marr JJ, Spernoga JF, etal: Fastidious mycobacteria grown from porcine prosthetic-heart-valve cultures. N Engl J Med 297: 101–102, 1977.PubMedCrossRefGoogle Scholar
  102. 102.
    Thubrikar MJ, Skinner JR, Eppink RT, Nolan SP: Stress analysis of porcine bioprosthetic heart valves in vivo. J Biomed Mater Res 16: 811–826, 1982.PubMedCrossRefGoogle Scholar
  103. 103.
    Thubrikar M, Piegrass WC, Deck JD, Nolan SP: Stresses of natural versus prosthetic aortic valve leaflets in vivo. Ann Thorac Surg 30: 230–239, 1980.PubMedCrossRefGoogle Scholar
  104. 104.
    Thubrikar M, Carabello BA, Aouad A, Nolan SP: Interpretation of aortic root angiography in dogs and humans. Cardiovasc Res 16: 16–21, 1982.PubMedCrossRefGoogle Scholar
  105. 105.
    Thubrikar M, Piegrass, Bosher LP, Nolan SP: The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ Res 47: 792–800, 1980.PubMedGoogle Scholar
  106. 106.
    Van Steehoven AA, Veenstra PC, Reneman RS: The effect of some hemodynamic factors on the behavior of the aortic valve. J Biomech 15: 941–950, 1982.CrossRefGoogle Scholar
  107. 107.
    Van Steehoven AA, van Dongen MEH: The role of the trapped sinus vortex in aortic valve closure. In Schneck DJ (ed): Biofluid Mechanics 2. New York: Plenum, 1980, pp. 317–325.Google Scholar
  108. 108.
    Chong M, Eng M, Missirlis YF: Aortic valve mechanics. II. A stress analysis of porcine aortic valve leaflets in diastole. Biomater Med Devices Artif Organs 6: 225–244, 1978.PubMedGoogle Scholar
  109. 109.
    Reis RL, Hancock WD, Yarbrough JW, et al: The flexible stent: a new eoncepl in the fabrication of tissue heart valve prostheses. J Thorac Cardiovasc 62: 683–689, 1971.Google Scholar
  110. 110.
    Thomson FJ, Barratt-Boyes BG: The glutaral- dehyde-treated heterograft valve. J Thorac Cardiovasc Surg 74: 317–321, 1977.PubMedGoogle Scholar
  111. 111.
    Wright JTM, Eberhart CE, Gibbs ML, et al: Hancock II—an improved bioprosthesis. In Cohn LH, Gallucci V (eds): Cardiac Bioprostheses. New York: Yorke, 1982, pp. 425–444.Google Scholar
  112. 112.
    Carpentier AF, Lane E: Supported bioprosthetic heart valve with compliant orifice ring. US Patent 4,106, 129, 1978.Google Scholar
  113. 113.
    Borkon AM, Mcintosh CL, Jones M, et al: Inward stent-post bending of a porcine bioprosthesis in the mitral position: cause of bioprosthetic dysfunction. J Thorac Cardiovasc Surg 83: 105–107, 1982.PubMedGoogle Scholar
  114. 114.
    Salomon NW, Copeland JG, Goldman S, Larson DF: Unusual complication of the Hancock porcine heterograft: strut compression in the aortic root. J Thorac Cardiovasc Surg 77: 294–296, 1979.PubMedGoogle Scholar
  115. 115.
    Magilligan DJ, Fisher E, Alam M: Hemolytic anemia with porcine xenograft aortic and mitral valves. J Thorac Cardiovasc Surg 79: 628–631, 1980.PubMedGoogle Scholar
  116. 116.
    Schoen FJ, Schulman LJ, Cohn LH: Quantitative anatomic analysis of “stent creep” of explanted Hancock standard porcine bioprostheses used for cardiac valve replacement. Am J Cardiol 56: 110–114, 1985.PubMedCrossRefGoogle Scholar
  117. 117.
    Levine FH, Buckley MJ, Austen WG: Hemodynamic evaluation of the Hancock modified orifice bioprosthesis in the aortic position. Circulation 58 (suppl I): 33–35, 1978.Google Scholar
  118. 118.
    Carpentier A, Dubost C, Lane E, et al: Continuing improvements in valvular bioprostheses. J Thorac Cardiovasc Surg 83: 27–42, 1982.PubMedGoogle Scholar
  119. 119.
    Wright JTM: Porcine or pericardial valves? Now and the future: design and engineering consider-ations. In Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 567–579.Google Scholar
  120. 120.
    Schoen FJ, Fernandez J, Gonzalez-Lavin L, Cernaianu A: Causes of failure and pathologic findings in surgically removed Ionescu-Shiley standard bovine pericardial heart valve bio-prostheses: emphasis on progressive structural deterioration. Circulation 76: 618 - 627, 1987.PubMedCrossRefGoogle Scholar
  121. 121.
    Wheatley DJ, Fisher J, Reece IJ, et al: Primary tissue failure in pericardial heart valves. J Thorac Cardiovasc Surg 94: 367–374, 1987.PubMedGoogle Scholar
  122. 122.
    Walley VM, Keon WJ: Patterns of failure in Ionescu-Shiley bovine pericardial bioprosthetic valves. J Thorac Cardiovasc Surg 93: 925–933, 1987.PubMedGoogle Scholar
  123. 123.
    Gabbay S, Bortolotti U, Wasserman F, et al: Long-term follow-up of the Ionescu-Shiley mitral pericardial xenograft. J Thorac Caradiovasc Surg 88: 758–763, 1984.Google Scholar
  124. 124.
    Brais MP, Bedard JP, Goldstein W, et al: Ionescu-Shiley pericardial xenografts: follow-up to 6 years. Ann Thorac Surg 39: 105–111, 1985.PubMedCrossRefGoogle Scholar
  125. 125.
    Reul GJ, Cooley DA, Duncan JM, et al: Valve failure with the Ionescu-Shiley bovine pericardial bioprosthesis: analysis of 2680 patients. J Vasc Surg 2: 192–203, 1985.PubMedGoogle Scholar
  126. 126.
    Nistal F, Garcia-Satue E, Artinano E, et al: Comparative study of primary tissue valve failure between Ionescu-Shiley pericardial and Hancock porcine valves in the aortic position. Am J Cardiol 57: 161–164, 1986.PubMedCrossRefGoogle Scholar
  127. 127.
    Cooley DA, Ott DA, Reul GJ, et al: Ionescu-Shiley bovine pericardial bioprostheses: clinical results in 2701 patients. In Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 177–198.Google Scholar
  128. 128.
    Bortolotti U, Milano A, Thiene G, et al: Early mechanical failures of the Hancock pericardial xenograft. J Thorac Cardiovasc Surg 94: 200–207, 1987.PubMedGoogle Scholar
  129. 129.
    Yoganathan AP, Woo YR, Sung HW, et al: In vitro hemodynamic characteristics of tissue bioprostheses in the aortic position. J Thorac Cardiovasc Surg 92: 198–209, 1986.PubMedGoogle Scholar
  130. 129.
    Yoganathan AP, Woo YR, Sung HW, et al: In vitro hemodynamic characteristics of tissue bioprostheses in the aortic position. J Thorac Cardiovasc Surg 92: 198–209, 1986.PubMedGoogle Scholar
  131. 131.
    Heng MK, Baratt-Boyes BG, Agnew TM, et al: Isolated mitral replacement with stent- mounted antibiotic-treated aortic allograft valves. J Thorac Cardiovasc Surg 74: 230–235, 1977.PubMedGoogle Scholar
  132. 132.
    Christie GW, Gavin JB, Barratt-Boyes BG: Graft detachment, a cause of incompetence in stent- mounted aortic valve allografts. J Thorac Cardiovasc Surg 90: 901–906, 1985.PubMedGoogle Scholar
  133. 133.
    Murray G: Homologous aortic-valve-segment transplants as a surgical treatment for aortic and mitral insufficiency. Angiology 7: 466–471, 1956.PubMedCrossRefGoogle Scholar
  134. 134.
    Barratt-Boyes BG: Homograft aortic valve replacement in aortic incompetence and stenosis. Thorax 19: 131–150, 1964.PubMedCrossRefGoogle Scholar
  135. 135.
    Ross DN: Homograft replacement of the aortic valve. Lancet 2: 487, 1962.PubMedCrossRefGoogle Scholar
  136. 136.
    Ross DN, Somerville J: Correction of pulmonary atresia with a homograft aortic valvç. Lancet 2: 1446–1447, 1966.PubMedCrossRefGoogle Scholar
  137. 137.
    Foster JH, Collins AH, Jacobs JK, Scott HW Jr: Long term follow-up of homografts used in the treatment of coarctation of the aorta. J Cardiovasc Surg 6: 111–120, 1965.Google Scholar
  138. 138.
    Ross D, Yacoub M: Homograft replacement of the aortic valve: a critical review. Prog Cardiovasc Dis 11: 926–929, 1965.Google Scholar
  139. 139.
    Davies H, Lessof MH, Robert CI, Ross DN: Homograft replacement of the aortic valve. Lancet 1: 926–929, 1965.PubMedCrossRefGoogle Scholar
  140. 140.
    Barratt-Boyes BG, Roche HG, Brandt PWT, et al: Aortic homograft valve replacement: a long- term follow-up of an initial series of 101 patients. Circulation 40: 763–775, 1969.Google Scholar
  141. 141.
    Barratt-Boyes BG, Roche AHG, Whitlock RML: Six year review of the results of freehand aortic replacement using an antibiotic sterilized homograft valve. Circulation 55: 353–361, 1977.PubMedGoogle Scholar
  142. 142.
    Angell WW, Shumway NE, Kosek JC: A five year study of viable aortic valve homografts. J Thorac Cardiovasc Surg 64: 329–338, 1972.PubMedGoogle Scholar
  143. 142.
    Angell WW, Shumway NE, Kosek JC: A five year study of viable aortic valve homografts. J Thorac Cardiovasc Surg 64: 329–338, 1972.PubMedGoogle Scholar
  144. 144.
    Yacoub M, Kittle CF: Sterilization of valve homografts by antibiotic solution. Circulation 41(suppl II):II29–II31, 1970.Google Scholar
  145. 145.
    Wain WH, Pearce HM, Riddell RW, Ross DN: A re-evaluation of antibiotic sterilization of heart valve allografts. Thorax 32: 740–742, 1977.PubMedCrossRefGoogle Scholar
  146. 146.
    Malm JP, Bowman FO Jr, Harris PD, Kovalik ATW: An evaluation of aortic homografts sterilized by electron geam energy. J Thorac Cardiovasc Surg 54: 471–477, 1967.PubMedGoogle Scholar
  147. 147.
    Aparicio SR, Donnelly RJ, Dexter F, Watson DA: Light and electron microscopic studies on homograft and heterograft heart valves. J Pathol 115: 147–162, 1975.PubMedCrossRefGoogle Scholar
  148. 148.
    Angell WW, Angell JD, Oury JH, et al: Long- term follow-up of viable frozen aortic homo- grafts: a viable homograft valve bank. J Thorac Cardiovasc Surg 93: 815–822, 1987.PubMedGoogle Scholar
  149. 149.
    O’Brien MF, Strafford EG, Gardner MAH, et al: A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves, with a note on chromosomal studies. J Thorac Cardiovasc Surg 94: 812–823, 1987.PubMedGoogle Scholar
  150. 150.
    Bodnar E, Wain WH, Martelli V, Ross DN: Long term performance of 580 homograft and autograft valves used for aortic valve replacement. Thorac Cardiovasc Surg 27: 31–38, 1979.PubMedCrossRefGoogle Scholar
  151. 151.
    Barratt-Boyes BG, Roche AHG, Subramanyan R, et al: Long-term follow-up of patients with the antibiotic-sterilized aortic homograft valve inserted free-hand in the aortic position. Circulation 75: 768–777, 1987.PubMedCrossRefGoogle Scholar
  152. 152.
    Wain WH, Greco R, Ingegneri A, et al: 15 Years’ experience with 615 homograft and autograft aortic valve replacements. Int J Artif Organs 3: 169–172, 1980.PubMedGoogle Scholar
  153. 153.
    Harris PD, Kovalik AJW, Marks JA, Malm JP: Factors modifying aortic homograft structure and function. Surgery 63: 45–59, 1968.Google Scholar
  154. 154.
    Hudson REB: Pathology of human aortic valve homografts. Br Heart J 28: 291–301, 1966.PubMedCrossRefGoogle Scholar
  155. 155.
    Smith JC: The pathology of human aortic valve homografts. Thorax 22: 114–138, 1967.PubMedCrossRefGoogle Scholar
  156. 156.
    Roe FJC, Glendenning OM: The carcinogenicity of beta-propiolactone for mouse skin. Br J Cancer 10: 357–362, 1956.PubMedCrossRefGoogle Scholar
  157. 157.
    Kolman A, Naslund M, Calleman CJ: Genotoxie effects of ethylene oxide and the relevance to human cancer. Carcinogenesis 7: 1245–1250, 1986.PubMedCrossRefGoogle Scholar
  158. 158.
    Davies H, Missen GAK, Blandford G, et al: Homograft replacementclinical and pathologic study. Am J Cardiol 22: 195–217, 1968.PubMedCrossRefGoogle Scholar
  159. 159.
    Barratt-Boyes BG: Long-term follow-up of aortic valve grafts. Br Heart J 33 (suppl): 60–65, 1971.Google Scholar
  160. 160.
    Ingegneri A, Wain WH, Martelli V, et al: An 11 year assessment of 93 flash frozen homograft valves in the aortic position. Thorac Cardiovasc Surg 27: 304–397, 1979.PubMedCrossRefGoogle Scholar
  161. 161.
    Livi U, Abdel-Kadir A, Parker R, et al: Viability and morphology of aortic and pulmonary homografts: a comparative study. J Thorac Cardiovasc Surg 93: 755–760, 1987.PubMedGoogle Scholar
  162. 162.
    Pate JW, Sawyer PN: Freeze dried aortic grafts: a preliminary report of experimental evaluation. Am J Surg 86: 3–13, 1953.PubMedCrossRefGoogle Scholar
  163. 163.
    Reichenbach DD, Mohri H, Merendino KA: Pathological changes in human aortic valve ho- mografts. Circulation 39 (suppl I): I47–I56, 1969.Google Scholar
  164. 164.
    Brock RC: Long-term degenerative changes in aortic segment homografts with particular reference to calcification. Thorax 23: 249–255, 1968.PubMedCrossRefGoogle Scholar
  165. 165.
    Knaghani A, Dhalla N, Penta A, et al: Patient status 10 years or more after aortic valve replacement using antibiotic sterilized homografts. In Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 38–46.Google Scholar
  166. 166.
    Ferrans VJ, Hilbert SL, Tornita Y, et al: Mor-phology of collagen in bioprosthetic heart valves. In Nimni M (ed): Collagen, Vol. 3: Biotechnology. Boca Raton: CRC Press, 1988, pp. 145–189.Google Scholar
  167. 167.
    Polystan Bioprostheses Information Bulletins BP A, BPC, BPD, BPE, BPF, and BP1. Copenhagen: Polystan A/S, 1980.Google Scholar
  168. 168.
    Ishihara T, Ferrans VJ, Jones M, et al: Structure of bovine parietal pericardium and of unimplanted Ionescu-Shiley pericardial valvular bioprostheses. J Thorac Cardiovasc Surg 81: 747–757, 1981.PubMedGoogle Scholar
  169. 169.
    Ferrans VJ, Thiedemann KU: Ultrastructure of the normal heart. In Silver MD (ed): Cardiovascular Pathology. New York: Churchill Livingstone, 1983, pp. 31–86.Google Scholar
  170. 170.
    Gross L, Kugel MA: Topographic anatomy and histology of the valves in the human heart. Am J Pathol 7: 445–473, 1931.PubMedGoogle Scholar
  171. 171.
    Sell S, Scully RE: Aging changes in the aortic and mitral valves: histologic and histoehemical studies, with observations on the pathogenesis of calcific aortic stenosis and calcification of the mitral annulus. Am J Pathol 46: 345–365, 1965.PubMedGoogle Scholar
  172. 172.
    Khanna SK, Ross JK, Monro JL: Homograft aortic valve replacement: seven years’ experience with antibiotic-treated valves. Thorax 36: 330–337, 1981.PubMedCrossRefGoogle Scholar
  173. 173.
    Ross DN, Martelli V, Wain WH: Allograft and antograft valves used for aortic valve replacement. In Ionescu MJ (ed): Tissue Heart Valves. London: Butterworth, 1979, pp. 127–172.Google Scholar
  174. 174.
    Kay PH, Ross DN: Fifteen years’ experience with the aortic homograft: the conduit of choice for right ventricular outflow tract reconstruction. Ann Thorac Surg 40: 360–363, 1985.PubMedCrossRefGoogle Scholar
  175. 175.
    Shabbo FP, Wain WH, Ross DN: Right ventricular outflow reconstruction with aortic homograft conduit: analysis of long-term results. Thorac Cadiovasc Surg 28: 21–25, 1980.CrossRefGoogle Scholar
  176. 176.
    Fontan F, Choussat A, Peville C, et al: Aortic valve homografts in the surgical treatment of complex cardiac malformations. J Thorac Car-diovasc Surg 87: 649–657, 1984.Google Scholar
  177. 177.
    Jonas RA, Freed MD, Mayer JF, Castaneda AR: Long-term follow-up of patients with synthetic right heart conduits. Circulation 72(suppl II):II77–II83, 1985.Google Scholar
  178. 178.
    Miller DC, Stinson ES, Oyer PE, et al: Durability of porcine xenograft valves and conduits in children. Circulation 66 (suppl I): 172–185, 1982.Google Scholar
  179. 179.
    Ferrans VJ, Arbustini E, Eido EE, Jones M: Anatomic changes in right ventricular-pulmonary artery conduits implanted in baboons. In Bodnar E, Yacoub M (eds): Biologic and Bioprosthetic Valves. New York: Yorke, 1986, pp. 316–339.Google Scholar
  180. 180.
    Robbins SL: Cell injury and cell death. In: Pathologic Basis of Disease. Philadelphia: Saun-ders, 1974, pp. 21 - 54.Google Scholar
  181. 181.
    Armiger LC, Thomson RW, Strickett MG, Barratt-Boyes BG: Morphology of heart valves preserved by liquid nitrogen freezing. Thorax 40: 778–786, 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Stephen L. Hilbert
  • Victor J. Ferrans
  • Michael Jones

There are no affiliations available

Personalised recommendations