Skip to main content

Allograft Valve Banking: Techniques and Technology

  • Chapter

Abstract

The use of human allograft heart valves for replacement of congenitally defective or diseased heart valves has become clinically accepted in cardiothoracic surgery. From the early days of using wet-stored “nonviable” homografts to current methods of transplanting cryogenically preserved “viable” allografts, the superiority of human heart valve implants has been well documented.1–7 However, as the clinical utilization of heart valve allografts increases, the availability of this human tissue will become a factor. With approximately 25,000 adult aortic valve replacements and 5000 pediatric reconstructions done annually in the United States,8 ways to maximize the number of heart valves available for transplant must be sought.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Khanna SK, Ross JK, Monro JL: Homograft aortic valve replacement—seven years’ experience with antibiotic-treated valves. Thorax 36: 330–337, 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Wain WH, Greco R, Ignegeri A, et al: 15 Years experience with 615 homograft and autograft aortic valve replacements. Int J Artif Organs 3:169–172, 1980.

    PubMed  CAS  Google Scholar 

  3. Angell WW, Angell JD, Oury JH, et al: Long-term follow-up of viable frozen aortic homografts. J Thorac Cardiovasc Surg 93: 815–822, 1987.

    PubMed  CAS  Google Scholar 

  4. O’Brien MF, Stafford EG, Gardner AH, et al: A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves, with a note on chromosomal studies. J Thorac Cardiovasc Surg 94: 812–823, 1987.

    PubMed  Google Scholar 

  5. O’Brien MF, personal communication, 7 March, 1988.

    Google Scholar 

  6. Kirklin JW, Blackstone EH, Maehara T, et al: Intermediate-term fate of cryopreserved allograft and xenograft valved conduits. Ann Thorac Surg 44: 598–606, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Barratt-Boyes BG, Roche AHG, Subramanyan R, et al: Long-term follow-up of the antibiotic sterilized aortic homograft valve inserted free-hand in the aortic position. Circulation 75: 768–777, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Karp RB: The use of free-hand unstented aortic valve allografts for replacement of the aortic valve. J Cardiac Surg 1: 23–32, 1986.

    Article  CAS  Google Scholar 

  9. American Heart Association Annual Report, 1985: Dallas: AHA National Center.

    Google Scholar 

  10. The American Association of Tissue Banks: Technical Manual for Tissue Banking. Arlington, VA: AATB, 1987.

    Google Scholar 

  11. Armiger LC, Thomson RW, Striekett MG, Barratt-Boyes BG: Morphology of heart valves preserved by liquid nitrogen freezing. Thorax 40: 778–786, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Clinical Program 101—Homograft Heart Valves. Marietta, GA: Cryolife, Inc., 1985, p. 12.

    Google Scholar 

  13. Angell JD, Christopher BS, Hawtrey O, Angell WM: A fresh viable human heart valve bank— sterilization, sterility testing and cryogenic preservation. Transplant Proc 8 (suppl 1): 127–141, 1976.

    Google Scholar 

  14. Kay PH, Ross DN: 15 Years’ experience with the aortic homograft: the conduit of choice for right ventricular outflow tract reconstruction. Ann Thorac Surg 40: 360–364, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Allwork SP, Pucci JJ, Cleland WP, Bentall HH: The longevity of sterilized aortic valve homografts 1966–1972. J Cardiovasc Surg 27: 213–216, 1986.

    CAS  Google Scholar 

  16. Fontan F, Chaussat A, Deville C, et al: Aortic valve homografts in the surgical treatment of complex cardiac malformations. J Thorac Cardiovasc Surg 87: 649–657, 1984.

    PubMed  CAS  Google Scholar 

  17. Barratt-Boyes GB, Roche ABG, Whitlock RML: 6 Year review of the results of freehand aortic valve replacement using an antibiotic sterilized homograft valve. Circulation 55: 353–361, 1977.

    PubMed  CAS  Google Scholar 

  18. Kirklin JW, Barratt-Boyes BG: Cardiac Surgery. New York: Wiley, 1986, p. 421.

    Google Scholar 

  19. A. Schuler S, Yankah AC, Hetzer R: Allogenic valve procurement in cardiac transplantation. Cardiac Valve Allografts 19621987. New York: Springer-Verlag 1987, pp. 13–16.

    Google Scholar 

  20. Wolfinbarger L, Weintraub B: Technical Program Report: Heart Valve Cryopreservation. Virginia Beach, VA: Virginia Tissue Bank, 1987.

    Google Scholar 

  21. Belzer FO, Sollinger HW, Glass NR, et al: Beneficial effects of adenosine and phosphate in kidney preservation. Transplantation. 36: 633–636, 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Henry ML, Sommer BG, Ferguson RM. Improved immediate function of renal allografts with Belzer perfusate. Transplantation. 45: 73–75, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Mohri H, Reichenbach DD, Merendino KA: Biology of homologous and heterologous aortic valves. In: Biological Tissue in Heart Valve Replacement. London: Butterworth, 1979, p. 144.

    Google Scholar 

  24. Ross DN, Martelli V, Wain WH: Allograft and autograft valves used for aortic valve replacement. In Ignescu MI (ed): Tissue Heart Valves. Boston: Butterworth, 1979, pp. 127–172.

    Google Scholar 

  25. Striekett MG, Barratt-Boyes BG, MacCulloch D: Disinfection of human heart valve allografts with antibiotics in low concentration. Pathology 15: 457–462, 1983.

    Article  Google Scholar 

  26. Yacoub M, Kittle CF: Sterilization of valve homografts by antibiotic solutions. Circulation 41 (suppl): 29–31, 1970.

    Google Scholar 

  27. Lockey E, Al-Janabi N, Gonzales-Lavin L, Ross DN: A method of sterilizing and preserving fresh allograft heart valves. Thorax 27: 398–400, 1972.

    Article  PubMed  CAS  Google Scholar 

  28. Waterworth PM, Lockey E, Berry EM, Pearce HM: A critical investigation into the antibiotic sterilization of heart valve homografts. Thorax 29: 432–436, 1974.

    Article  PubMed  CAS  Google Scholar 

  29. Wain WH, Pearce HM, Riddell RW, Ross DN: A re-evaluation of antibiotic sterilization of heart valve allografts. Thorax 32: 740–742, 1977.

    Article  PubMed  CAS  Google Scholar 

  30. Gavin JB, Herdson PB, Monro JL, Barratt-Boyes BG: Pathology of antibiotic-treated human heart valve allografts. Thorax 28: 473–481, 1973.

    Article  PubMed  CAS  Google Scholar 

  31. Gavin JB, Barratt-Boyes BG, Hitchcock GC, Herdson PB: Histopathology of fresh human aortic valve allografts. Thorax 28: 482–487, 1973.

    Article  PubMed  CAS  Google Scholar 

  32. Gonzalez-Lavin L, McGrath L, Alvarez M, Graf D: Antibiotic sterilization in the preparation of homovital homograft valves: Is it necessary? Cardiac Valve Allografts 1962–1987. New York: Springer-Verlag 1987, pp. 17–21.

    Google Scholar 

  33. Girinath MR, Gavin JB, Striekett MG, Barratt-Boyes BG: The effects of antibiotics and storage on the viability and ultrastructure of fibroblasts in canine heart valves prepared for grafting. Aust NZ J Surg 44: 170, 1974.

    Article  CAS  Google Scholar 

  34. Armiger LC, Gavin JB, Barratt-Boyes BG: Histological assessment of orthotopic aortic valve leaflet allografts: its role in selecting graft pre-treatment. Pathology 15: 67–73, 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Gavin JB, Monro JL: The pathology of pulmonary and aortic valve allografts used as mitral replacements in dogs. Pathology 6: 119–127, 1974.

    Article  PubMed  CAS  Google Scholar 

  36. Watts LK, Duffy P, Field RB, et al: Establishment of a viable homograft cardiac valve bank— a rapid method of determining homograft viability. Ann Thorac Surg 21: 230–236, 1976.

    Article  PubMed  CAS  Google Scholar 

  37. Yankah AC, Hetzer R: Cardiac Valve Allografts 1962–1987. New York: Springer-Verlag, 1987, pp. 23–26.

    Google Scholar 

  38. Yankah AC, Hetzer JR: Procurement and viability of cardiac valve allografts. Cardiac Valve Allografts 1962–1987. New York: Springer-Verlag, 1987, pp. 23–26.

    Google Scholar 

  39. Kirklin JK, Kirklin JW, Pacifico JAD, Phillips S: Cryopreservation of aortic valve homografts. Cardiac Valve Allografts 1962–1987. New York: Springer-Verlag, 1987, pp. 35–36.

    Google Scholar 

  40. Gonzalez-Lavin L, Bianchi J, Graf D, Amini S, Gordon CI: Homograft valve calcification—Evidence for an immunological influence. Cardiac Valve Allografts 1962–1987. New York: Springer-Verlag, 1987, pp. 69–74.

    Google Scholar 

  41. Watkins C: University of Chicago Hospital Heart Valve Program, personal communication, October 1988.

    Google Scholar 

  42. Almeida M: American Red Cross, Los Angeles, Heart Valve Program, personal communication, October 1988.

    Google Scholar 

  43. Robbins, SL: Pathologic Basis of Disease, 3rd edition, Philadelphia: WB Saunders Co., 1984, pp. 581, 593.

    Google Scholar 

  44. Morehead, RP: Human Pathology, New York: McGraw-Hill, Inc., 1965, pp. 420–423.

    Google Scholar 

  45. McGinnis, MR: Current Topics in Medical Mycology, Volume 1, Chapter 3, New York: Springer-Verlag, 1985.

    Google Scholar 

  46. Sommerwith, AC, Jarett, L: Gradwohl’s Clinical Laboratory Methods and Diagnosis, Volume 2, 8th Edition. St. Louis: C.V. Mosby Co., 1980, p. 2205.

    Google Scholar 

  47. Bank HL, Brockbank K: Basic principles of cryobiology. J Cardiac Surg 2 (suppl): 137–143, 1987.

    CAS  Google Scholar 

  48. Ashwood-Smith MJ, Farrant J: Low Temperature Preservation in Medicine and Biology. Tunbridge Wells, Kent: Pitman, 1980, p. 12.

    Google Scholar 

  49. Karow AM, Pegg DE: Organ Preservation for Transplantation New York: Marcel Dekker, 1981, p. 480.

    Google Scholar 

  50. Bodnar E, Olsen EGJ, Florio R, et al: Heterologous antigenicity induced in human aortic homografts during preservation. Eur J Cardiothorac Surg 2: 43–47, 1988.

    Article  PubMed  CAS  Google Scholar 

  51. Yankah AC: At The First Workshop on Homologous and Autologous Heart Valves. Chicago: Deborah Heart and Lung Center, 5 April 1987.

    Google Scholar 

  52. Karow AM, Pegg DE: Organ Preservation for Transplantation New York: Marcel Dekker, 1981, p. 122.

    Google Scholar 

  53. Clinical Program 101—Homograft Heart Valves. Marietta, GA: Cryolife, Inc., August 1985, p. 17.

    Google Scholar 

  54. Mermet B, Buch W, Angell W: Viable heart valve graft—preservation in the frozen state. Surg Forum 21: 156, 1970.

    PubMed  CAS  Google Scholar 

  55. VanderKamp AWM, Visser WJ, VanDongen JM, et al: Preservation of aortic heart valves with maintenance of cell viability. J Surg Res 30: 47–56, 1981.

    Article  CAS  Google Scholar 

  56. O’Brien MF, Stafford G, Gardner M, et al: The viable cryopreserved allograft aortic valve. J Cardiac Surg 2 (suppl): 153–167, 1987.

    Google Scholar 

  57. May SR, Guttman RM, Wainwright JF: Cryopreservation of skin using an insulated heat sink box stored at —70 degrees C. Cryobiology 22: 205–214, 1985.

    Article  PubMed  CAS  Google Scholar 

  58. Grout BWW, Morris GJ: Freezing and cellular organization. In: The Effect of Low Temperatures on Biological Systems. London: Edward Arnold, 1987, pp. 147–173.

    Google Scholar 

  59. Karow AM, Pegg DE: Organ Preservation for Transplantation. New York: Marcel Dekker, 1981, p. 118.

    Google Scholar 

  60. Grout BWW, Morris GJ: The Effects of Low Temperatures on Biological Systems. London: Edward Arnold, 1987, pp. 45–46.

    Google Scholar 

  61. Mazur P: The role of cell membranes in the freezing of yeast and other single cells. Ann NY Acad Sci 125: 658, 1965.

    Article  PubMed  CAS  Google Scholar 

  62. Dowell LG, Rinfret AP: Low temperature forms of ice as studied by x-ray diffraction. Nature 188: 1144, 1960.

    Article  CAS  Google Scholar 

  63. Ashwood-Smith MJ, Farrant J: Low Temperature Preservation in Medicine and Biology. Tunbridge Wells, Kent: Pitman, 1980, p. 291.

    Google Scholar 

  64. Luyet BJ: On various phase transitions occurring in aqueous solutions at low temperatures. Ann NY Acad Sci 85: 549, 1960.

    Article  PubMed  CAS  Google Scholar 

  65. Ashwood-Smith MJ, Farrant J: Low Temperature Preservation in Medicine and Biology. Tunbridge Wells, Kent: Pitman, 1980, p. 22.

    Google Scholar 

  66. Farrant J, Woolgar AE: Possible relationships between the physical properties of solutions and cell damage during freezing. In: The Frozen Cell. London: Churchill, 1979, p. 97.

    Google Scholar 

  67. Peterson WD, Stulbert CS: Freeze preservation of cultured animal cells. Cryobiology 1: 80, 1964.

    Article  Google Scholar 

  68. Josylyn MA: The action of enzymes in the dried state and in concentrated solutions. In: Proceedings of the Eighth International Congress of Refrigeration. 1952, p. 331.

    Google Scholar 

  69. Watkins C: University of Chicago Hospital Heart Valve Program, personal communication, 1988.

    Google Scholar 

  70. Test Report 212: Temperature Profile. New Pague, MN: MVE Engineering, 18 February 1985.

    Google Scholar 

  71. Cryolife Inc.: U.S. Patent 4,597,266: Freezing agent and container. 1 July 1986.

    Google Scholar 

  72. Cryolife Inc.: Thermal cycling during transport of homograft tissue may compromise cell viability. Cryolife Techn Memorandum 2 (1): July 1987.

    Google Scholar 

  73. Grout BWW, Morris GJ: The Effects of Low Temperatures on Biological Systems. London: Edward Arnold, 1987, pp. 162–166.

    Google Scholar 

  74. Grout BWW, Morris GJ: The Effects of Low Temperatures on Biological Systems. London: Edward Arnold, 1987, p. 148.

    Google Scholar 

  75. Ashwood-Smith MJ, Farrant J: Low Temperature Preservation in Medicine and Biology. Tunbridge Wells, Kent: Pitman, 1980, p. 15.

    Google Scholar 

  76. O’Brien MF: (Panel Discussion #1) J Cardiac Surg 2(suppl):169, 1987.

    Google Scholar 

  77. O’Brien MF: Discussion. Cardiac Valve Allografts 19671987. New York: Springer-Verlag, 1987, p. 50.

    Google Scholar 

  78. American Association of Tissue Banks: Standards for Tissue Banking, Arlington, VA: AATB, 1984.

    Google Scholar 

  79. Finegold SM, Martin WJ, Scott EG: Bailey and Scott’s Diagnostic Microbiology. 5th Ed., St. Louis: Mosby, 1978.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Lange, P.L., Hopkins, R.A. (1989). Allograft Valve Banking: Techniques and Technology. In: Cardiac Reconstructions with Allograft Valves. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3568-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3568-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8159-7

  • Online ISBN: 978-1-4612-3568-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics