Skip to main content

Abstract

Great advances have been made in the cryopreservation of living cells since the early works of Smith and Parkes during the 1950s. These advances have included development of sophisticated computer-controlled freezing equipment, characterization of a variety of cryprotective agents, and establishment of major research and development programs in cryobiology within academia and industry. Most of this research and technologic development has focused on the preservation of dispersed cell suspensions, and it has successfully enlarged our understanding of the basic principles of cryopreservation of biologic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mazur, P, Miller RH: The use of permeability coefficients in predicting the osmotic response of human red blood cells during the removal of intracellular glycerol. Cryobiology 13: 126, 1976.

    Article  Google Scholar 

  2. O’Brien MF, Stafford EG, Gardner MAH, et al: A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves, with a note on chromosomal studies. J Thorac Cardiovasc Surg 94: 812 823, 1987.

    Google Scholar 

  3. Smith AU, Polge C: Survival of spermatozoa at low temperatures. Nature 166: 668, 1950.

    Article  PubMed  CAS  Google Scholar 

  4. Morris GJ: Direct chilling injury. In Grant BWW, Morris GJ (eds): The Effects of Low Temperatures on Biological Systems. London: Arnold Press, 1987, pp. 120–146.

    Google Scholar 

  5. Lovelock JE: The haemolysis of human red blood cells by freezing and thawing. Biochim Biophys Acta 10: 414–426, 1953.

    Article  PubMed  CAS  Google Scholar 

  6. Morris GJ, Coulson GE, Meyer MA, et al: Cold shock: a wide-spread cellular reaction. CryoLetters 4: 179–192, 1983.

    CAS  Google Scholar 

  7. Hobbs PV: Ice Physics. Oxford: Clarendon Press, 1974.

    Google Scholar 

  8. Fahy GM, MacFarlane DR, Angell CA, Merryman HT: Vitrification as an approach to cryopres- ervation. Cryobiology 21: 407–426, 1984.

    Article  PubMed  CAS  Google Scholar 

  9. MacFarlane DR: Devitrification in glass-forming aqueous solutions. Cryobiology 23: 230–244, 1986.

    Article  CAS  Google Scholar 

  10. van der Berg L, Rose D: Effects of freezing on the pH and composition of sodium and potassium phosphate solutions: the reciprocal system KH2PO4-Na2HPO4-H20. Arch Biochem Biophys 81: 319, 1959.

    Article  Google Scholar 

  11. van der Berg L, Soliman FS: Composition and pH changes during freezing of solutions containing calcium and magnesium phosphates. Cryobiology 6: 10, 1969.

    Article  PubMed  Google Scholar 

  12. Lovelock JE: The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11: 28, 1953.

    Article  PubMed  CAS  Google Scholar 

  13. Schneider U, Mazur P: Relative influence of un-frozen fraction and salt concentration on the survival of slowly frozen eight-cell mouse embryos. Cryobiology 24: 17–41, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Leibo SP, McGrath JJ, Cravalho EG: Microscopic observation of intracellular ice formation in mouse ova as a function of cooling rate. Cryobiology 15: 257, 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Rail WF: Physical chemical aspects of cryoprotection of human erythrocytes and mouse embryos. Ph.D. dissertation, University of Tennessee, 1979.

    Google Scholar 

  16. Farrant J: General observations on cell preservation. In Ashwood-Smith MJ, Farrant J (eds): Low Temperature Preservation in Medicine and Biology. London: Pitman, 1980, pp. 1 - 18.

    Google Scholar 

  17. Karow AM Jr, Carrier O Jr: Effects of cryoprotectant compounds on mammalian heart muscle. Surg Gynecol Obstet 128: 571, 1969.

    PubMed  CAS  Google Scholar 

  18. Shlafer M: Pharmacological considerations in cryopreservation. In Karow AM, Pegg DE (eds): Organ Preservation for Transplantation. 2nd Ed. New York: Marcel Dekker, 1981, pp. 177–212.

    Google Scholar 

  19. Mazur P: Fundamental cryobiology and the preservation of organs by freezing. In Karow AM Jr, Pegg DE (eds): Organ Preservation for Transplantation. 2nd Ed. New York: Marcel Dekker, 1981, pp. 143–175.

    Google Scholar 

  20. Fahy GM, Karow AM Jr: Posthypertonic osmotic shock and myocardial injury. Cryobiology 12: 577, 1975.

    Article  Google Scholar 

  21. Ladbrooke BD, Williams RM, Chapman D: Studies on lecithin-cholesterol-water interactions by differential scanning ealorimetry and x-ray diffraction. Biochim Biophys Acta 150: 333–340, 1968.

    Article  PubMed  CAS  Google Scholar 

  22. Pegg DE: The effect of cell concentration on the recovery of human erythrocytes after freezing and thawing in the presence of glycerol. Cryobiology 18: 221–228, 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Miller RH, Mazur P: Survival of frozen-thawed human red cells as a function of cooling and warm-ing velocities. Cryobiology 13: 404, 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Whittingham DG, Leibo SP, Mazur P: Survival of mouse embryos frozen to —196 and —269°C. Science 178: 411, 1972.

    Article  PubMed  CAS  Google Scholar 

  25. Deck JD: Endothelial cell orientation on aortic valve leaflets. Cardiovasc Res 20: 760–767, 1986.

    Article  PubMed  CAS  Google Scholar 

  26. Barnett RE: The effects of dimethylsulfoxide and glycerol on Na+, K+-ATPase and membrane structure. Cryobiology 15: 227, 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Katsuda, S, Okada Y, Nakanishi I: Dimethyl sulfoxide induces microtubule formation in culturedarterial smooth muscle cells. Cell Biol Int Rep 11: 103–110, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Katsuda S, Okada Y, Nakanishi I, Tanaka J: The influence of dimethyl sulfoxide on cell growth and ultrastructural features of cultured smooth muscle cells. J Electron Micros 33: 239–241, 1984.

    CAS  Google Scholar 

  29. Jackowski S, Leibo SP, Mazur P: Glycerol perme-abilities of fertilized and unfertilized mouse ova. J Exp Zool 212: 329, 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Thorpe PE, Knight SC, Farrant J: Optimal condi-tions for the preservation of mouse lymph node cells in liquid nitrogen using cooling rate techniques. Cryobiology 13: 126, 1976.

    Article  PubMed  CAS  Google Scholar 

  31. Graham JK, Foote RH: Effect of several lipids, fatty acyl chain length, and degree of unsaturation on the motility of bull spermatozoa after cold shock and freezing. Cryobiology 24: 42–52, 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Quinn PJ: A lipid-phase separation model of low temperature damage to biological membranes. Cryobiology 22: 128–146, 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Morris GJ, Clarke A: Effects of Low Temperatures on Biological Membranes. New York: Academic Press, 1981, pp. 241–377.

    Google Scholar 

  34. Silver MA, Roberts WC: Detailed anatomy of the normal functioning aortic valve in hearts of normal and increased weight. Am J Cardiol 55: 454–461, 1985.

    Article  PubMed  CAS  Google Scholar 

  35. Schoen FJ, Tsao JW, Levy RJ: Calcification of bovine pericardium used in cardiac valve bio- prostheses. Am J Pathol 123: 134–145, 1986.

    PubMed  CAS  Google Scholar 

  36. Murata K: Acidic glycosaminoglycans in human heart valves. J Mol Cell Cardiol 13: 281–292, 1981.

    Article  PubMed  CAS  Google Scholar 

  37. Campo RD, Romano JG: Changes in cartilage proteoglycans associated with calcification. Calcif Tissue Int 39: 175–184, 1986.

    Article  PubMed  CAS  Google Scholar 

  38. Tenenbaum HC, Hunter GK: Chondroitin sulfate inhibits calcification of bone formed in vitro. Bone Mineral 2: 43–51, 1987.

    CAS  Google Scholar 

  39. Hunter GK: An ion-exchange mechanism of carti-lage calcification. Connect Tissue Res 16: 111–120, 1987.

    Article  PubMed  CAS  Google Scholar 

  40. Torii SR, Bashey I, Nakao K: Acid mucopolysac-charide composition of human heart valve. Biochim Biophys Acta 101: 285–291, 1965.

    PubMed  CAS  Google Scholar 

  41. Elford BC: Temperature dependence of cation permeability of dog red blood cells. Nature 248: 522, 1974.

    Article  PubMed  CAS  Google Scholar 

  42. Collins GM, Bravo-Shugarman M, Terasaki PI: Kidney preservation for transplantation. Lancet 2: 1219, 1969.

    Article  PubMed  CAS  Google Scholar 

  43. Aequatella H, Perez-Gonzalez M, Morales JM, Whittembury G: Ionic and histological changes in the kidney after perfusion and storage for trans-plantation. Transplantation 14: 480, 1972.

    Article  Google Scholar 

  44. Solberg S, Larsen T, Jorgensen L, Sorlie D: Cold induced endothelial cell detachment in human saphenous vein grafts. J Cardiovasc Surg 28: 571–575, 1987.

    CAS  Google Scholar 

  45. Wheatley DJ, McGregor CGA: Post-implantation viability in canine allograft heart valves. Cardiovasc Res 11: 78–85, 1977.

    Article  PubMed  CAS  Google Scholar 

  46. Balch CM, Karp RB: Blood group compatibility and aortic valve allotransplantation in man. J Cardiovasc Surg 70: 256–259, 1975.

    CAS  Google Scholar 

  47. Heslop BF, Wilson SE, Hardy BE: Antigenicity of aortic valve allografts. Ann Surg 177: 301–306, 1973.

    Article  PubMed  CAS  Google Scholar 

  48. Buch WS, Kosek JC, Angell WW: The role of rejection and mechanical trauma on valve graft viability. J Thorac Cardiovasc Surg 62: 696–706, 1971.

    PubMed  CAS  Google Scholar 

  49. Rossi MA, Braile DM, Teixeira DR, Carillo SV: Calcific degeneration of pericardial valvular xeno-grafts implanted subcutaneously in rats. Int J Cardiol 12: 331–339, 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Levy RJ, Schoen FJ, Levy JT, et al: Biologic determinants of dystrophic calcification and os-teocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutane-ously in rats. Am J Pathol 113: 143–155, 1983.

    PubMed  CAS  Google Scholar 

  51. Angell JD, Hawtrey O, Angell WM: A fresh, viable human heart valve bank: sterilization, sterility testing and cryogenic preservation. Transplant Proc 8 (suppl 1), 1976.

    Google Scholar 

  52. Khanna SK, Ross JK, Monro JS: Homograft aortic valve replacement: seven years experience with antibiotic-treated valves. Thorax 36: 330–337, 1981.

    Article  PubMed  CAS  Google Scholar 

  53. Van der Kamp AM, Visser WJ, Van Dongen JM, et al: Preservation of aortic heart valves with maintenance of cell viability. J Surg Res 30: 47–56, 1981.

    Article  PubMed  Google Scholar 

  54. Wain WH, Pearch HM, Riddell RW, Ross DN: A réévaluation of the antibiotic sterilization of heart valve allografts. Thorax 32: 740, 1977.

    Article  PubMed  CAS  Google Scholar 

  55. Ashwood-Smith M J, Farrant J: Low Temperature Preservation in Medicine and Biology. London: Pitman, 1980.

    Google Scholar 

  56. Angell WW, Angell JD, Oury JH, et al: Long- term follow-up of viable frozen aortic homografts. J Thorac Cardiovasc Surg 93: 815–822, 1987.

    PubMed  CAS  Google Scholar 

  57. Kirklin JW, Blackstone EH, Maehara T, et al: Intermediate-term fate of eryopreserved allograft and xenograft valved conduits. Ann Thorac Surg 44: 598–606, 1987.

    Article  PubMed  CAS  Google Scholar 

  58. O’Brien M: Comparison of fresh antibiotic sterilized and eryopreserved viable homografts: 15 year and 10 year clinical experience. Presented at Transplantation Techniques and Use of Cryopreserved Allograft Cardiac Valves: A Symposium and Laboratory for Surgeons. Beaver Creek, Colorado, 18–20 September 1986.

    Google Scholar 

  59. Karow AM: Biophysical and chemical considerations in cryopreservation. In: Organ Preservation for Transplantation. New York: Marcel Dek- ker, Ed. Karow, Jr., AM & Pegg, DE 1981, pp. 13–30.

    Google Scholar 

  60. Magilligan DJ, Lewis JW, Tilley BL, Peterson E: The porcine bioprosthetie valve. J Thorac Cardiovasc Surg 89: 499–507, 1985.

    PubMed  Google Scholar 

  61. Ross DN, Martelli V, Wain WH: Allograft and autograft valves used for aortic valve replacement. In Ionescu MI (ed): Tissue Heart Valves. Boston: Butterworth, 1979, pp. 127–172.

    Google Scholar 

  62. Strickett MG, Barratt-Boyes BG, MacCulloeh D: Disinfection of human heart valve allografts with antibiotics in low concentrations. Pathology 15: 457–462, 1983.

    Article  PubMed  CAS  Google Scholar 

  63. Dowell LG, Rinfret AP: Low-temperature forms of ice as studied by x-ray diffraction. Nature 188: 1144–1148, 1960.

    Article  CAS  Google Scholar 

  64. Rajotte, RV, Shnitka TK, Liburd EM, etal: Histo-logical studies on cultured canine heart valves recovered from — 196°C. Cryobiology 14: 15–22, 1977.

    Article  PubMed  CAS  Google Scholar 

  65. Arminger LC, Gavin JB, Barratt-Boyes BG: His-tological assessment of orthotopic aortic valve leaflet allografts: its role in selecting graft pre-treatment. Pathology 15: 67–73, 1983.

    Article  Google Scholar 

  66. Gavin JB, Herdson PB, Monro JJ, Barratt-Boyes BG: Pathology of antibiotic treated human heart valve allografts. Thorax 28: 473 - 481, 1973.

    Article  PubMed  CAS  Google Scholar 

  67. Watts LK, Dufly P, Field RB, et al: Establishment of a viable homograft cardiac valve bank: a rapid method of determining homograft viability. Ann Thorac Surg 21: 230–236, 1976.

    Article  PubMed  CAS  Google Scholar 

  68. Ishihara T, Ferrans VJ, Jones M, et al: Occurrence and significance of endothelial cells in implanted porcine bioprosthetie valves. Am J Cardiol 48: 443–454, 1981.

    Article  PubMed  CAS  Google Scholar 

  69. Schoen FJ, Levy RJ, Nelson AC, et al: Onset and progression of experimental bioprosthetie heart valve calcification. Lab Invest 52: 523–532, 1985.

    PubMed  CAS  Google Scholar 

  70. Thubrikar MJ, Aouad J, Nolan SP: Patterns of calcific deposits in operatively excised stenotic or purely regurgitant aortic valves and their relation to mechanical stress. Am J Cardiol 58: 304–308, 1986.

    Article  PubMed  CAS  Google Scholar 

  71. Levy RJ, Schoen FJ, Golomb G: Bioprosthetie heart valve calcification: clinical features, pathobiology and prospects for prevention: Crit Rev Biocompat 2: 147–187, 1986.

    CAS  Google Scholar 

  72. Levy RJ, Hawley MA, Schoen FJ, et al: Inhibition by diphosphonate compounds of calcification of porcine bioprosthetie heart valve cusps implanted subcutaneously in rats. Circulation 71: 349–356, 1985.

    Article  PubMed  CAS  Google Scholar 

  73. Levy RJ, Wolfrum J, Schoen FJ, et al: Inhibition of calcification of bioprosthetie heart valves by local controlled-released diphosphonate. Science 227: 190–192, 1985.

    Article  Google Scholar 

  74. Holthofer H: Vascularization of the embryonic kidney: detection of endothelial cells with Ulex europaeus I lectin. Cell Differ 20: 27–31, 1987.

    Article  PubMed  CAS  Google Scholar 

  75. Khan AA, Gonzalez-Lavin L: Viability assessment of allograft values by autoradiography. Yale J Biol Med 49: 347–350, 1976.

    PubMed  CAS  Google Scholar 

  76. Armiger LC, Gavin JB, Barrat-Boyes BG: Histological assessment of orthotopic aortic valve leaflet allografts: its role in selecting graft pretreatment. Pathology 15: 67–73, 1983.

    Article  PubMed  CAS  Google Scholar 

  77. Van der Kamp AWM, Nauta J: Fibroblast function and maintenance of aortic valve matrix. Cardiovasc Res 13: 167–172, 1979.

    Article  PubMed  Google Scholar 

  78. Low RB, Hildebran JN, Absher PM, et al: Com-parison of the use of isotopic proline vs. leucine to measure protein synthesis in cultured fibroblasts. Connect Tissue Res 14: 179–185, 1986.

    Article  PubMed  CAS  Google Scholar 

  79. Stevens BR, Wright EM: Kinetics of the intestinal brush border proline (imino) carrier. J Biol Chem 262: 6546–6551, 1987.

    PubMed  CAS  Google Scholar 

  80. Dziewaitkowski DD: The role of sulfated protein- polysaceharides in calcification. Clin Orthop Rel Res 35: 189–201, 1964.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Wolfinbarger, L., Hopkins, R.A. (1989). Biology of Heart Valve Cryopreservation. In: Cardiac Reconstructions with Allograft Valves. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3568-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3568-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8159-7

  • Online ISBN: 978-1-4612-3568-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics