Functional Evolution of Lateral Line and Inner Ear Sensory Systems

  • Ad. J. Kalmijn

Abstract

In detecting moving objects, the fish’s lateral line and inner ear support different, but closely related, hydrodynamic functions, suggesting early developments in the vertebrate sense of hearing. In an effort to elucidate the functional evolution of the two sensory systems, this chapter examines the hydrodynamic and acoustic fields in nature, the physics and physiology of the detection process, the evaluation of the sensory data, and the ensuing behavioral responses.

Keywords

Propa Vorticity Sine Compressibility Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Bergeijk WA van (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.Google Scholar
  2. Bergeijk WA van, Alexander S (1962) Lateral line canal organs on the head of Fundulus heteroclitus J. Morphol 110: 333–346.CrossRefGoogle Scholar
  3. Blaxter JHS, Denton EJ, Gray JAB (1981) Acousticolateralis system in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 39–59.Google Scholar
  4. Buwalda RJA (1981) Segregation of directional and nondirectional acoustic information in the cod. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 139–171.Google Scholar
  5. Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: Evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 553–593.Google Scholar
  6. Dale T (1980) Surface morphology of the acoustico-lateralis sensory organs in teleosts: Functional and evolutionary aspects. In: Ali MA (ed) Environmental Physiology of Fishes. New York: Plenum Press, pp. 387–401.Google Scholar
  7. Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond 218: 1–26.PubMedCrossRefGoogle Scholar
  8. Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic animals. New York: Springer-Verlag, pp. 595–617.Google Scholar
  9. Dijkgraaf S (1960) Hearing in bony fishes. Proc R Soc Lond 152: 51–54.PubMedCrossRefGoogle Scholar
  10. Dijkgraaf S (1963) The functioning and the significance of the lateral-line organs. Biol Rev 38: 51–105.PubMedCrossRefGoogle Scholar
  11. Enger PS (1966) Acoustic threshold in goldfish and its relation to the sound source distance. Comp Biochem Physiol 18: 859–868.PubMedCrossRefGoogle Scholar
  12. Flock A (1965) The ultrastructure of the lateral line canal organ. Acta Otolaryngol. (Suppl.) 199: 7–90.Google Scholar
  13. Flock A (1971) Sensory transduction in hair cells. In: Loewenstein WR (ed) Handbook of Sensory Physiology, Vol. I. New York: Springer-Verlag, pp. 396–441.Google Scholar
  14. Flock A, Flock B, Murray E (1977) Studies on the sensory hairs of receptor cells in the inner ear. Acta Otolaryngol 83: 85–91.PubMedCrossRefGoogle Scholar
  15. Frisch K von (1938) The sense of hearing in fish. Nature 141: 8–11.CrossRefGoogle Scholar
  16. Gray JAB (1984) Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats. Proc R Soc Lond 220: 299–325.CrossRefGoogle Scholar
  17. Harris GG (1964) Considerations on the physics of sound production by fishes. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford; U.K.; Pergamon Press, pp. 233–247.Google Scholar
  18. Harris GG, van Bergeijk WA (1962) Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34: 1831–1841.CrossRefGoogle Scholar
  19. Hawkins AD (1986) Underwater sound and fish behavior. In: Pitcher TJ (ed) The Behavior of Teleost Fishes. London: Croom Helm, pp. 114–151.Google Scholar
  20. Hawkins AD, Johnstone ADF (1978) The hearing of the Atlantic salmon, Salmo salar J Fish Biol 13: 655–673.CrossRefGoogle Scholar
  21. Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 2: 1–10.PubMedGoogle Scholar
  22. Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of the vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74: 2407–2411.PubMedCrossRefGoogle Scholar
  23. Jielof R, Spoor A, de Vries H (1952) The microphonic activity of the lateral line. J Physiol 116: 137–157.PubMedGoogle Scholar
  24. Kalmijn AJ (1988a) Hydrodynamic and caustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.Google Scholar
  25. Kalmijn AJ (1988b) Detection of weak electric fields. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 151–186.Google Scholar
  26. Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J. Exp Biol 133: 249–262.Google Scholar
  27. Kroese ABA, van der Zalm JM, van den Bercken J (1978) Frequency response of the lateral-line organ of Xenopus laevis. Pflügers Arch 375: 167–175.PubMedCrossRefGoogle Scholar
  28. Kuiper JW (1967) Frequency characteristics and functional significance of the lateral line organ. In: Cahn PH (ed) Lateral Line Detectors. Bloomington: Indiana University Press, pp. 105–121.Google Scholar
  29. Lewis ER (1984) Inertial motion sensors. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. Cambridge U.K.; Cambridge University Press, pp. 587–610.Google Scholar
  30. Montgomery JC, MacDonald JA (1987) Sensory tuning of lateral line receptors in antarctic fish to movements of planktonic prey. Science 235: 195–196.PubMedCrossRefGoogle Scholar
  31. Morse PM, Ingard KU (1968) Theoretical Acoustics. New York: McGraw-Hill.Google Scholar
  32. Muenz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L.J Comp Physiol 157: 555–568.CrossRefGoogle Scholar
  33. Myrberg AA (1978) Underwater sound-its effect on the behavior of sharks. In: Hodgson ES, Mathewson RF (eds) Sensory Biology of Sharks, Skates, and Rays. Washington: U.S. Government Printing Office, pp. 391–417.Google Scholar
  34. Netten SM van, Kroese ABA (1987) Laser interferometric measurements on the dynamic behavior of the cupula in the fish lateral line. Hear Res 29: 55–61.PubMedCrossRefGoogle Scholar
  35. Olson K (1976) Evidence for localization of sound by fish in schools. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 257–270.Google Scholar
  36. Platt C (1988) Equilibrium in the vertebrates: Signals, senses, and steering underwater. In Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 783–809.Google Scholar
  37. Pumphrey RJ (1950) Hearing. Symp Soc Exp Biol 4: 3–18.Google Scholar
  38. Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 459–480.Google Scholar
  39. Sand O (1984) Lateral-line systems. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. Cambridge, U.K.; Cambridge University Press, pp. 3–32.Google Scholar
  40. Wenz JM (1964) Curious noises and the sonic environment in the ocean. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford, U.K.; Pergamon Press, pp. 101–119.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Ad. J. Kalmijn

There are no affiliations available

Personalised recommendations