Advertisement

The Lateral Line System of Surface-Feeding Fish: Anatomy, Physiology, and Behavior

  • Horst Bleckmann
  • Gottfried Tittel
  • Elke Blübaum-Gronau

Abstract

Fishes live in almost every type of aquatic habitat. Not surprisingly, many fishes show striking morphological, physiological, and behavioral adaptations. Some species, belonging to the families Cyprinodontidae, Hemirhamphidae, Gasteropelecidae, and Pantodonitidae, are specialized in foraging at the water surface. Schwartz (1965, 1971) has shown that surface-feeding fish detect and localize part of their prey, terrestrial insects fallen into the water, by means of capillary surface waves elicited by the prey’s struggling. The receptive structures involved in prey detection are lateral line organs located on the fish’s head and back (Schwartz 1970). Behavioral studies indicate that surface-feeding fish distinguish between different wave types. In addition, these fish determine the direction and the distance to a wave source under open loop conditions-i.e., even if only a single, short-lasting wave train is presented. In this chapter we review the literature on surface-feeding fish. In addition, we include recent unpublished anatomical, electrophysiological, and behavioral results. For more general reviews on water surface wave reception, the reader is referred to Bleckmann (1985a, 1988) and Wilcox (1988).

Keywords

Lateral Line Target Angle Lateral Line System Arrival Time Difference Water Surface Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J Comp Physiol A 140: 163–172.CrossRefGoogle Scholar
  2. Bleckmann H (1982) Reaction time, threshold values, and localization of prey in stationary and swimming surface feeding fish Aplocheilus lineatus. Zool Jahrb Abt Allg Zool Physiol Tiere 86: 71–81.Google Scholar
  3. Bleckmann H (1985a) Perception of water surface waves: How surface waves are used for prey identification, prey localization, and intraspecific communication. In: Ottoson D, Autrum MJ (eds) Sensory Physiology, Vol. 5. New York: Springer, pp. 147–166.Google Scholar
  4. Bleckmann H (1985b) Discrimination between prey and non-prey wave signals in the fishing spider Dolomedes triton (Pisauridae). In: Kalmring K, Eisner N (eds) Acoustic and Vibrational Communication in Insects. Berlin: Paul Parey, pp. 215–222.Google Scholar
  5. Bleckmann H (1988) Prey identification and prey localization in surface feeding fish and fishing spiders. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 619–641.Google Scholar
  6. Bleckmann H, Lotz T (1987) The vertebrate catching behaviour of the fishing spider Dolomedes triton (Araneae, Pisauridae). Anim Behav 35: 641–651.CrossRefGoogle Scholar
  7. Bleckmann H, Rovner J (1984) Sensory ecology of the semiaquatic spider (Dolomedes triton). I. Roles of vegetation and wind-generated waves in site selection. Behav Ecol Sociobiol 14: 297–301.CrossRefGoogle Scholar
  8. Bleckmann H, Schwartz E (1981) Reaction time of the topminnow Aplocheilus lineatus to surface waves determined by video-and electromyogram recordings. Experientia 37: 362–363.PubMedCrossRefGoogle Scholar
  9. Bleckmann H, Schwartz E (1982) The functional significance of frequency modulation within a wave train for prey localization in the surface-feeding fish Aplocheilus lineatus (Cyprinodontidae). J Comp Physiol A 145: 331–339.CrossRefGoogle Scholar
  10. Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line system of the topminnow Aplocheilus lineatus. Naturwissenschaften 68: 624–625.CrossRefGoogle Scholar
  11. Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination in the surface-feeding fish Aplocheilus lineatus-a prerequisite for prey localization? J Comp Physiol A 143: 485–490.CrossRefGoogle Scholar
  12. Blübaum E, Schwartz E (1985) Richtungsempfindlichkeit eines Einzelneuromasten vom Schmetterlingsfisch Pantodon buchholzi. Verh Dtsch Zool Ges 78: 280.Google Scholar
  13. Blübaum-Gronau E, Münz H (1987) Topologische Repräsentation primärer Afferenzen einzelner Seitenlinienabschnitte beim Schmetterlingsfisch Pantodon buchholzi. Verh Dtsch Zool Ges 80: 268–269.Google Scholar
  14. Blübaum-Gronau E, Seiss M, Söhl CH (1988) Untersuchung der Seitenlinenprojektion bei Teleostei-eine vergleichende HRP-Studie bei Osteoglossomorpha und Euteleostei. Verh Dtsch Zool Ges (in press).Google Scholar
  15. Denton EJ, Gray ABJ (1988) Mechanical factors in the excitation of lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 595–617.Google Scholar
  16. Flock Å (1965) The ultrastructure of the lateral line canal organ. Acta Otolaryngol (Suppl) 199: 7–90.Google Scholar
  17. Franz GJ (1959) Splashes as sources of sound in liquids. J Acoust Soc Am 31: 1080–1096.CrossRefGoogle Scholar
  18. Hoin-Radkovsky I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon buchholzi (Pantodontidae). Anim Behav 32: 840–851.CrossRefGoogle Scholar
  19. Jannsen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30: 210–229.Google Scholar
  20. Kalmijn A (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 83–130.Google Scholar
  21. Käse R, Bleckmann H (1987) Prey localization by surface wave-ray tracing-fish track bugs like oceanographers track storms. Experientia 43: 290–292.PubMedCrossRefGoogle Scholar
  22. Lang HH (1980) Surface wave discrimination between prey and nonprey by the back-swimmer Notonecta glauca L. (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6: 233–246.CrossRefGoogle Scholar
  23. Lighthill (1980) Waves in Fluids. London: Cambridge University Press.Google Scholar
  24. McCormick CA (1981) Central projections of lateral line and eight nerves in the bowfin, Amia calva. J Comp Neurol 197: 1–15.PubMedCrossRefGoogle Scholar
  25. Müller U (1984) Die morphologische und physiologische Anpassung des Seitenliniensystems von Pantodon buchholzi an den Lebensraum Wasseroberfläche. PhD Thesis, University of Giessen, West Germany.Google Scholar
  26. Müller U, Schwartz E (1982) Influence of single neuromasts on prey localizing behavior of surface-feeding fish, Aplocheilus lineatus. J Comp Physiol A 149: 399–408.CrossRefGoogle Scholar
  27. Schwartz E (1965) Bau und Funktion der Seitenlinie des Streifenhechtlings (Aplocheilus lineatus Cuv. u. Val.). Z Vergl Physiol A 50: 55–87.CrossRefGoogle Scholar
  28. Schwartz E (1970) Ferntastsinnesorgane von Oberflächenfischen. Z Morphol Tiere 67: 40–57.Google Scholar
  29. Schwartz E (1971) Die Ortung von Wasserwellen durch Oberflächenfische. Z Vergl Physiol A 74: 64–80.CrossRefGoogle Scholar
  30. Sommerfeld A (1970) Vorlesungen über theoretische Physik, Vol. 2: Mechanik der deformierbaren Medien. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
  31. Tittel G (1985) Determination of stimulus direction by the topminnow, Aplocheilus lineatus. A model of two-dimensional orientation with the lateral line system. Verh Dtsch Zool Ges 78: 242.Google Scholar
  32. Tittel G (1987) Growth and development of the lateral-line organs of Aplocheilus lineatus. Verh Dtsch Zool Ges 80: 281–282.Google Scholar
  33. Tittel G (1989) Untersuchungen zum Beutefangverhalten des Streifenhechtlings Aplocheilus lineatus (Cu. U. Val.). Ein Modell zur Richtungsdetermination unter Berücksichtigung von ontogenetischen Prozessen des peripheren Seitenliniensystems. PhD Thesis, University of Giessen, West Germany.Google Scholar
  34. Tittel G, Müller U, Schwartz E (1984) Determination of stimulus direction by the topminnow Aplocheilus lineatus. In: Varju D, Schnitzler HU (eds) Localization and Orientation in Biology and Engineering. New York: Springer, pp. 69–72.Google Scholar
  35. Topp G (1983) Primary lateral line response to water surface waves in the topminnow Aplocheilus lineatus (Pisces, Cyprinodontidae). Pflügers Arch 397: 62–67.PubMedCrossRefGoogle Scholar
  36. Unbehauen H (1980) Morphologische und elektrophysiologische Untersuchungen zur Wirkung von Wasserwellen auf das Seitenlinienorgan des Streifenhechtlings (Aplocheilus lineatus). PhD Thesis, University of Giessen, West Germany.Google Scholar
  37. Waldner I (1981) Habituation von Aplocheilus lineatus auf Oberflächenwellen des Wassers, PhD Thesis, University of Giessen, West Germany.Google Scholar
  38. Wilcox RS (1988) Surface wave reception in invertebrates and vertebrates. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 643–663.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Horst Bleckmann
  • Gottfried Tittel
  • Elke Blübaum-Gronau

There are no affiliations available

Personalised recommendations