Skip to main content

Effects of Weightlessness on Human Fluid and Electrolyte Physiology

  • Conference paper
Physiological Function in Special Environments

Abstract

The fluid-regulating systems of the body have been of interest to space medicine researchers since results from the earliest flights indicated significant changes in this area (Berry et al. 1966; Dietlein and Harris 1966; Lutwak et al. 1969). The virtual absence of gravity causes a decrease in posturally induced hydrostatic force in the extremities, which leads to cephalad redistribution of blood. This redistribution is thought to be responsible for most of the spaceflight-induced changes in fluid and electrolyte metabolism. Plasma volume decreases (Johnson 1979) and water and electrolyte balances become negative (Leach 1979) in space travelers. In addition to these clear-cut effects, more complex and subtle changes in renal and circulatory dynamics, endocrine function, body biochemistry, and metabolism occur during spaceflight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RJ, Berl T, McDonald KM, Schrier RW (1976). Prostaglandins: Effects on blood pressure, renal blood flow, sodium and water excretion. Kidney Int 10: 205–215

    Article  PubMed  CAS  Google Scholar 

  • Atarashi K, Mulrow PJ, Franco-Saenz R, Snajdar R, Rapp J (1984). Inhibition of aldosterone production by an atrial extract. Science 224: 992–994

    Article  PubMed  CAS  Google Scholar 

  • Berry CA, Coons DO, Catterson AD, Kelly GF (1966). Man’s response to long-duration flight in the Gemini spacecraft. In: Gemini Midprogram Conference, February 23–25, 1966. Johnson Space Center, Houston, TX, pp 235–261

    Google Scholar 

  • Bungo MW, Charles JB, Johnson PC Jr. (1985). Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat Space Environ Med 56: 985–990

    PubMed  CAS  Google Scholar 

  • Dietlein LF, Harris E (1966). Experiment M-5, bioassays of body fluids. In: Gemini Midprogram Conference, February 23–25, 1966. Johnson Space Center, Houston, TX, pp 403–406

    Google Scholar 

  • Grigoriev AI (1983). Correction of changes in fluid-electrolyte metabolism in manned space flights. Aviat Space Environ Med 54: 318–323

    PubMed  CAS  Google Scholar 

  • Hoffler GW (1977). Cardiovascular studies of U.S. space crews: An overview and perspective. In: Hwang NHC, Normann NA (eds) Cardiovascular Flow Dynamics and Measurements. University Park Press, Baltimore, MD, pp 335–363

    Google Scholar 

  • Hoffler GW, Johnson RL (1975). Apollo flight crew cardiovascular evaluations. In: Johnston RS, Dietlein LF, Berry CA (eds) Biomedical Results of Apollo, NASA SP-368. National Aeronautics and Space Administration, Washington, DC, pp 227–264

    Google Scholar 

  • Johnson PC (1979). Fluid volumes changes induced by spaceflight. Acta Astronaut 6: 1335–1341

    Article  PubMed  CAS  Google Scholar 

  • Kirsch KA, Röcker L, Gauer OH, Krause R, Leach C, Wicke HJ, Landry R (1984). Venous pressure in man during weightlessness. Science 225: 218–219

    Article  PubMed  CAS  Google Scholar 

  • Leach CS (1979). A review of the consequences of fluid and electrolyte shifts in weightlessness. Acta Astronaut 6: 1123–1135

    Article  PubMed  CAS  Google Scholar 

  • Leach CS (1981). An overview of the endocrine and metabolic changes in manned space flight. Acta Astronaut 8: 977–986

    Article  PubMed  CAS  Google Scholar 

  • Leach CS, Alexander WC, Johnson PC (1975). Endocrine, electrolyte, and fluid volume changes associated with Apollo missions. In: Johnston RS, Dietlein LF, Berry CA (eds) Biomedical Results of Apollo, NASA SP-368. National Aeronautics and Space Administration, Washington, DC, pp 163–184

    Google Scholar 

  • Leach CS, Chen JP, Crosby W, Johnson PC, Lange RD, Larkin E, Tavassoli M (1985). Spacelab 1 Hematology Experiment (1NS103): Influence of Space Flight on Erythrokinetics in Man, NASA TM 58268. Johnson Space Center, Houston, TX

    Google Scholar 

  • Leach CS, Johnson PC, Cintron NM (1986). The regulation of fluid and electrolyte metabolism in weightlessness. In: Hunt J (ed) Proceedings of the 2nd International Conference on Space Physiology, Toulouse, France, November 20–22, 1985, ESA SP-237. European Space Agency, Paris, France, pp 31–36

    Google Scholar 

  • Leach CS, Johnson PC, Suki WN (1983). Current concepts of space flight induced changes in hormonal control of fluid and electrolyte metabolism. Physiologist 26: S-24–S-27

    Google Scholar 

  • Leach CS, Rambaut PC (1977). Biochemical responses of the Skylab crewmen: An overview. In: Johnston RS, Dietlein LF (eds) Biomedical Results from Skylab, NASA SP-377. National Aeronautics and Space Administration, Washington, DC, pp 204–216

    Google Scholar 

  • Lutwak L, Whedon GD, Lachance PH, Reid JM, Lipscomb HS (1969). Mineral, electrolyte and nitrogen balance studies of the Gemini VII fourteen-day orbital space flight. J Clin Endocrinol 29: 1140–1156

    Article  CAS  Google Scholar 

  • Nicogossian AE, Parker JF Jr (1982). Space Physiology and Medicine, NASA SP-447. National Aeronautics and Space Administration, Washington, DC, p 40

    Google Scholar 

  • Nixon JV, Murray RG, Bryant C, Johnson, RL Jr, Mitchell JH, Holland OB, Gomez-Sanchez C, Vergne-Marini P, Blomqvist CG (1979). Early cardiovascular adaptation to simulated zero gravity. J Appl Physiol: Respirat Environ Exercise Physiol 46: 541–548

    CAS  Google Scholar 

  • Palluk R, Gaida W, Hoefke W (1985). Atrial natriuretic factor. Life Sci 36: 1415–1425

    Article  PubMed  CAS  Google Scholar 

  • Sjöstrand T (1953). Volume and distribution of blood and their significance in regulating the circulation. Physiol Rev 33: 202–228

    PubMed  Google Scholar 

  • Thornton WE, Hoffler GW, Rummel JA (1977). Anthropometric changes and fluid shifts. In: Johnston RS, Dietlein LF (eds) Biomedical Results from Skylab, NASA SP-377. National Aeronautics and Space Administration, Washington, DC, pp 330–338

    Google Scholar 

  • Thornton WE, Ord J (1977). Physiological mass measurements in Skylab. In: Johnston RS, Dietlein LF (eds) Biomedical Results from Skylab, NASA SP-377. National Aeronautics and Space Administration, Washington, DC, pp 175–182

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Leach, C.S., Johnson, P.C. (1989). Effects of Weightlessness on Human Fluid and Electrolyte Physiology. In: Paganelli, C.V., Farhi, L.E. (eds) Physiological Function in Special Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3556-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3556-9_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8156-6

  • Online ISBN: 978-1-4612-3556-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics