Effects of Weightlessness on Human Fluid and Electrolyte Physiology

  • Carolyn S. Leach
  • Philip C. JohnsonJr.

Abstract

The fluid-regulating systems of the body have been of interest to space medicine researchers since results from the earliest flights indicated significant changes in this area (Berry et al. 1966; Dietlein and Harris 1966; Lutwak et al. 1969). The virtual absence of gravity causes a decrease in posturally induced hydrostatic force in the extremities, which leads to cephalad redistribution of blood. This redistribution is thought to be responsible for most of the spaceflight-induced changes in fluid and electrolyte metabolism. Plasma volume decreases (Johnson 1979) and water and electrolyte balances become negative (Leach 1979) in space travelers. In addition to these clear-cut effects, more complex and subtle changes in renal and circulatory dynamics, endocrine function, body biochemistry, and metabolism occur during spaceflight.

Keywords

Catheter Magnesium Filtration Creatinine Cortisol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson RJ, Berl T, McDonald KM, Schrier RW (1976). Prostaglandins: Effects on blood pressure, renal blood flow, sodium and water excretion. Kidney Int 10: 205–215PubMedCrossRefGoogle Scholar
  2. Atarashi K, Mulrow PJ, Franco-Saenz R, Snajdar R, Rapp J (1984). Inhibition of aldosterone production by an atrial extract. Science 224: 992–994PubMedCrossRefGoogle Scholar
  3. Berry CA, Coons DO, Catterson AD, Kelly GF (1966). Man’s response to long-duration flight in the Gemini spacecraft. In: Gemini Midprogram Conference, February 23–25, 1966. Johnson Space Center, Houston, TX, pp 235–261Google Scholar
  4. Bungo MW, Charles JB, Johnson PC Jr. (1985). Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat Space Environ Med 56: 985–990PubMedGoogle Scholar
  5. Dietlein LF, Harris E (1966). Experiment M-5, bioassays of body fluids. In: Gemini Midprogram Conference, February 23–25, 1966. Johnson Space Center, Houston, TX, pp 403–406Google Scholar
  6. Grigoriev AI (1983). Correction of changes in fluid-electrolyte metabolism in manned space flights. Aviat Space Environ Med 54: 318–323PubMedGoogle Scholar
  7. Hoffler GW (1977). Cardiovascular studies of U.S. space crews: An overview and perspective. In: Hwang NHC, Normann NA (eds) Cardiovascular Flow Dynamics and Measurements. University Park Press, Baltimore, MD, pp 335–363Google Scholar
  8. Hoffler GW, Johnson RL (1975). Apollo flight crew cardiovascular evaluations. In: Johnston RS, Dietlein LF, Berry CA (eds) Biomedical Results of Apollo, NASA SP-368. National Aeronautics and Space Administration, Washington, DC, pp 227–264Google Scholar
  9. Johnson PC (1979). Fluid volumes changes induced by spaceflight. Acta Astronaut 6: 1335–1341PubMedCrossRefGoogle Scholar
  10. Kirsch KA, Röcker L, Gauer OH, Krause R, Leach C, Wicke HJ, Landry R (1984). Venous pressure in man during weightlessness. Science 225: 218–219PubMedCrossRefGoogle Scholar
  11. Leach CS (1979). A review of the consequences of fluid and electrolyte shifts in weightlessness. Acta Astronaut 6: 1123–1135PubMedCrossRefGoogle Scholar
  12. Leach CS (1981). An overview of the endocrine and metabolic changes in manned space flight. Acta Astronaut 8: 977–986PubMedCrossRefGoogle Scholar
  13. Leach CS, Alexander WC, Johnson PC (1975). Endocrine, electrolyte, and fluid volume changes associated with Apollo missions. In: Johnston RS, Dietlein LF, Berry CA (eds) Biomedical Results of Apollo, NASA SP-368. National Aeronautics and Space Administration, Washington, DC, pp 163–184Google Scholar
  14. Leach CS, Chen JP, Crosby W, Johnson PC, Lange RD, Larkin E, Tavassoli M (1985). Spacelab 1 Hematology Experiment (1NS103): Influence of Space Flight on Erythrokinetics in Man, NASA TM 58268. Johnson Space Center, Houston, TXGoogle Scholar
  15. Leach CS, Johnson PC, Cintron NM (1986). The regulation of fluid and electrolyte metabolism in weightlessness. In: Hunt J (ed) Proceedings of the 2nd International Conference on Space Physiology, Toulouse, France, November 20–22, 1985, ESA SP-237. European Space Agency, Paris, France, pp 31–36Google Scholar
  16. Leach CS, Johnson PC, Suki WN (1983). Current concepts of space flight induced changes in hormonal control of fluid and electrolyte metabolism. Physiologist 26: S-24–S-27Google Scholar
  17. Leach CS, Rambaut PC (1977). Biochemical responses of the Skylab crewmen: An overview. In: Johnston RS, Dietlein LF (eds) Biomedical Results from Skylab, NASA SP-377. National Aeronautics and Space Administration, Washington, DC, pp 204–216Google Scholar
  18. Lutwak L, Whedon GD, Lachance PH, Reid JM, Lipscomb HS (1969). Mineral, electrolyte and nitrogen balance studies of the Gemini VII fourteen-day orbital space flight. J Clin Endocrinol 29: 1140–1156CrossRefGoogle Scholar
  19. Nicogossian AE, Parker JF Jr (1982). Space Physiology and Medicine, NASA SP-447. National Aeronautics and Space Administration, Washington, DC, p 40Google Scholar
  20. Nixon JV, Murray RG, Bryant C, Johnson, RL Jr, Mitchell JH, Holland OB, Gomez-Sanchez C, Vergne-Marini P, Blomqvist CG (1979). Early cardiovascular adaptation to simulated zero gravity. J Appl Physiol: Respirat Environ Exercise Physiol 46: 541–548Google Scholar
  21. Palluk R, Gaida W, Hoefke W (1985). Atrial natriuretic factor. Life Sci 36: 1415–1425PubMedCrossRefGoogle Scholar
  22. Sjöstrand T (1953). Volume and distribution of blood and their significance in regulating the circulation. Physiol Rev 33: 202–228PubMedGoogle Scholar
  23. Thornton WE, Hoffler GW, Rummel JA (1977). Anthropometric changes and fluid shifts. In: Johnston RS, Dietlein LF (eds) Biomedical Results from Skylab, NASA SP-377. National Aeronautics and Space Administration, Washington, DC, pp 330–338Google Scholar
  24. Thornton WE, Ord J (1977). Physiological mass measurements in Skylab. In: Johnston RS, Dietlein LF (eds) Biomedical Results from Skylab, NASA SP-377. National Aeronautics and Space Administration, Washington, DC, pp 175–182Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Carolyn S. Leach
  • Philip C. JohnsonJr.

There are no affiliations available

Personalised recommendations