Skip to main content

The Use of Extractants in Studies on Trace Metals in Soils, Sewage Sludges, and Sludge-Treated Soils

  • Chapter

Part of the book series: Advances in Soil Science ((SOIL,volume 9))

Abstract

When the main problems of trace metals in the soil were deficiencies, it was usually sufficient to know how much of an essential trace metal was “available” to an extractant, usually acetic acid, ethylene diamine tetracetic acid (EDTA), diethylene triamine pentacetic acid (DTPA), etc. (e.g., Lindsay and Norvell, 1969; Viets and Lindsay, 1973; Ministry of Agriculture, Fisheries and Food, 1981). This is fortunate because the soil chemistry of trace metals is rarely simple, and it is particularly obscure at deficiency levels, when even the least unavailable trace metal ions are held on “specific sites” whose character is difficult to establish or define, rather than in identifiable salts (Lindsay, 1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, E, C. Burmester, N.V. Hue, and F.L. Long. 1980. A comparison of column displacement and centrifuge methods for obtaining soil solutions. Soil. Sci. Soc. Am. J. 44:733–735.

    Article  CAS  Google Scholar 

  • Agemian, H., and A.S.Y. Chau. 1976. Evaluation of extraction techniques for the determination of metals in aquatic sediments. Analyst 101:761–767.

    Article  CAS  Google Scholar 

  • Alexander, L.T., and H.G. Byers, 1932. A critical laboratory review of methods of determining organic matter and carbonates in soil. U.S. Dept. of Agriculture, Tech. Bull. No. 317.

    Google Scholar 

  • Ball, D.F., and P. Beaumont. 1972. Vertical distribution of extractable iron and aluminium in soil profiles from a brown earth-peaty podzol association. J. Soil. Sci. 23:298–308.

    Article  CAS  Google Scholar 

  • Baldwin, A., T.A. Brown, P.H.T. Beckett, and G.E.P. Elliott. 1983. The forms of combination of Cu and Zn in digested sewage sludge. Water Res. 17:1935–1944.

    Article  CAS  Google Scholar 

  • Bascomb, C.L. 1968. Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. J. Soil Sci. 19:251–268.

    Article  CAS  Google Scholar 

  • Bergman, S.C., C.J. Ritter, E.E. Zamierowski, and C.R. Cothern. 1979. The use of zonal centrifugation in delineating trace element distributions in sewage sludges from the Dayton, Ohio area. J. Environ. Qual. 8:416–422.

    Article  CAS  Google Scholar 

  • Berrow, M.L., and W.M. Stein. 1983. Extraction of metals from soils and sewage sludges by refluxing with aqua regia. Analyst 108:277–285.

    Article  CAS  Google Scholar 

  • Borggard, O.K. 1976. Selective extraction of amorphous iron oxides by EDTA from a mixture of amorphous iron oxide, goethite and haematite. J. Soil Sci. 27:478–486.

    Article  Google Scholar 

  • Bracewell, J.M., A.S. Campbell, and B.D. Mitchell. 1970. An assessment of some thermal and chemical techniques used in the study of the poorly-ordered alumino-silicates in soil clays. Clay Miner. 8:325–335.

    Article  CAS  Google Scholar 

  • Bradford, G.R., A.L. Page, L.J. Lund, and W. Olmstead. 1975. Trace element concentrations of sewage treatment plant effluents and sludges; their interactions with soils and uptake by plants. J. Environ. Qual. 4:123–127.

    Article  CAS  Google Scholar 

  • Bremner, J.M., and H. Lees. 1949. Studies on soil organic matter. II. The extraction of organic matter from soil by neutral reagents. J. Agric. Sci. (Cambridge) 39:274–279.

    Article  CAS  Google Scholar 

  • Brown, A.L., J. Quick, and J.L. Eddings. 1971. A comparison of analytical methods for soil zinc. Soil Sci. Soc. Am. Proc. 35:105–107.

    Article  CAS  Google Scholar 

  • Campbell, D.J., and P.H.T. Beckett. 1988. The soil solution in a soil treated with digested sewage sludge. J. Soil Sci. 39:283–298.

    Article  CAS  Google Scholar 

  • Chao, T.T. 1972. Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Sci. Soc. Am. Proc. 36:764–768.

    Article  Google Scholar 

  • Chao, T.T, and L. Zhou. 1983. Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Sci. Soc. Am. J. 47:225–232.

    Article  CAS  Google Scholar 

  • Chen, S.Z., P.F. Low and C.B. Roth. 1987. Relation between potassium fixation and the oxidation state of octahedral iron. Soil Sci. Soc. Am. J. 51:82–90.

    Article  CAS  Google Scholar 

  • Coffin, D.E. 1963. A method for the determination of free iron in soils and clays. Can. J. Soil Sci. 43:7–17.

    Article  CAS  Google Scholar 

  • Cottenie, A., R. Camerlynck, M. Verloo, and A. Dhaese. 1979. Fractionation and determination of trace elements in plants, soils and sediments. Pure Appl. Chem. 52:45–53.

    Article  Google Scholar 

  • Dion, H.C. 1944. Iron oxide removal from clays and its influence on base-exchange properties and x-ray diffraction patterns of the clays. Soil Sci. 58:411–424.

    Article  CAS  Google Scholar 

  • de Endredy, A.S. 1963. Estimation of free iron oxides in soils and clays by a photolytic method. Clay Miner. Bull. 5:209–217.

    Article  Google Scholar 

  • Eaton, F.M., R.B. Harding, and T.J. Ganje. 1960. Soil solution extracts at tenth-bar moisture percentage. Soil Sci. 90:253–258.

    Article  Google Scholar 

  • Emmerich, W.E., L.J. Lund, A.L Page, and A.C. Chang. 1982. Solid phase forms of heavy metals in sewage sludge-treated soils. J. Environ. Qual. 11:178–181.

    Article  CAS  Google Scholar 

  • Fletcher, P., and P.H.T. Beckett. 1987. The chemistry of heavy metals in digested sewage sludge. 2. Heavy metal complexation with soluble organic matter. Water Res. 21: 1163–1172.

    Article  CAS  Google Scholar 

  • Follett, E.A.C., W.J. McHardy, B.D. Mitchell, and B.F.L. Smith. 1965. Chemical dissolution techniques in the study of clays. Pt. I and II. Clay Miner. 6:23–34

    Article  CAS  Google Scholar 

  • Follett, E.A.C., W.J. McHardy, B.D. Mitchell, and B.F.L. Smith. 1965. Chemical dissolution techniques in the study of clays. Pt. I and II. Clay Miner. 6:35–43.

    Article  CAS  Google Scholar 

  • Förstner, U.W., K. Calmano, H. Conrad, H. Jaksch, C. Schimkus, and J. Schoer. 1981. Chemical speciation of heavy metals in solid waste materials (sewage sludge, mining wastes, dredged materials, polluted sediments) by sequential extraction. Proc. Int. Conf. Heavy Metals Environ, WHO/EED, pp. 698–704.

    Google Scholar 

  • Gibbs, R.J. 1973. Mechanisms of trace metal transport in rivers. Science 180:71–73.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, R.J. 1977. Transport phases of transition metals in the Amazon and Yukon rivers. Geol. Soc. Am. Bull. 88:829–843.

    Article  CAS  Google Scholar 

  • Gupta, S.K., and Chen. 1975. Partitioning of trace elements in selective chemical fractions of nearshore sediments. Environ. Lett. 10:129–158.

    Article  PubMed  CAS  Google Scholar 

  • Hamblin, A.P., and A.M. Posner. 1979. The use of acetylacetone as a selective extractant of organically bonded metals in soils. J. Soil Sci. 30:175–181.

    Article  CAS  Google Scholar 

  • Harrison, R.M., D.P.H. Laxe, and S.J. Wilson. 1981. Chemical associations of lead, cadmium, copper and zinc in street dusts and roadside soils. Environ. Sci. Technol. 15:1378–1383.

    Article  CAS  Google Scholar 

  • Hashimoto, I., and M.L. Jackson. 1960. Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays and Clay Miner. 7:102–13.

    Article  Google Scholar 

  • Hickey, M.G., and J.A. Kittrick. 1984. Chemical partitioning of Cd, Cu, Ni and Zn in soils and sediments containing high levels of heavy metals. J. Environ. Qual. 13:372–377.

    Article  CAS  Google Scholar 

  • Himes, F., and S. Barber. 1957. Chelating ability of soil organic matter. Soil Sci. Soc. Am. Proc. 21:368–373.

    Article  CAS  Google Scholar 

  • Hodgson, J.F. 1963. Chemistry of the micronutrient elements in soils. Adv. Agron. 15:119–159.

    Article  Google Scholar 

  • Iyengar, S.S., D.C. Martens, and W.P. Miller. 1981. Distribution and plant availability of soil zinc fractions. Soil Sci. Soc. Am. J. 45:735–739.

    Article  CAS  Google Scholar 

  • Jarvis, S.C. 1984. The forms of occurrences of Mn in some acidic soils. J. Soil Sci. 35:421–429.

    Article  CAS  Google Scholar 

  • Jarvis, S.C. 1986. Forms of Al in some acid permanent grassland soils. J. Soil Sci. 37:211–222.

    Article  CAS  Google Scholar 

  • Jeanroy, E., and B. Guillet. 1981. The occurrence of suspended ferruginous particles in pyrophosphate extracts of some soil horizons. Geoderma 26:95–106.

    Article  CAS  Google Scholar 

  • Jeanroy, E., B. Guillet, and R. Ortiz. 1986b. Evaluation of iron forms by chemical extractants: applications to brunified and podzolic soils. Science du Sol, pp. 137–136.

    Google Scholar 

  • Jeanroy, E., B. Guillet, P. Delcroix, and C. Janot. 1986a. Soil iron forms: a comparison between chemical methods and Mössbauer spectroscopy. Science du Sol, pp. 135–136.

    Google Scholar 

  • Kämpf, N., and U. Schwertmann. 1982. The 5 M NaOH concentration treatment for iron oxides in soils. Clays Clay Miner. 30:401–408.

    Article  Google Scholar 

  • Kuo, S.P., P.E. Heilman, and A.S. Baker. 1983. Distribution and forms of Cu, Zn, Cd, Fe and Mn in soils near a copper smelter. Soil Sci. 135:101–109.

    Article  CAS  Google Scholar 

  • Le Riche, H.H., and A.H. Weir. 1963. A method of studying trace elements in soil fractions. J. Soil Sci. 14:225–235.

    Article  Google Scholar 

  • Lester, J.N., R.M. Sterritt, and P.W.W. Kirk. 1983. Significance and behaviour of heavy metals in waste water treatment processes. II. Sludge treatment and disposal. Sci. Total Environ. 30:45–83.

    Article  CAS  Google Scholar 

  • Lindsay, W.L. 1979. Chemical Equilibria in Soils. Wiley, New York.

    Google Scholar 

  • Lindsay, W.L., and W.A. Norvell. 1969. Equilibrium relationships of Zn++, Fe+++, Ca++ and H+ with EDTA and DTPA in soils. Soil Sci. Soc. Am. Proc. 33:62–68.

    Article  CAS  Google Scholar 

  • Loveland, P.J., and P. Bullock. 1976. Chemical and mineralogical properties of known podzolic soils in comparison with soils of other groups. J. Soil Sci. 32:523–540.

    Article  Google Scholar 

  • Loveland, P.J., and P. Digby. 1984. The extraction of Fe and Al by 0.1 M pyrophosphate solutions: a comparison of some techniques. J. Soil Sci. 35:243–250.

    Article  CAS  Google Scholar 

  • Lund, L.J., G. Sposito, and A.L. Page. 1985. Project Summary—Determination and prediction of chemical forms of trace metals in sewage sludge and sludge-amended soils. EPA/600/52-85/053, U.S. Environmental Protection Agency, Water Engineering Research Laboratory.

    Google Scholar 

  • Luoma, S.N., and E.A. Jenne. 1976. Estimating bio-availability of sediment-bound trace metals with chemical extractants. Trace Subst. Environ. Health 10:343–351.

    CAS  Google Scholar 

  • Mackenzie, R.C. 1954. Free iron-oxide removal from soils. J. Soil Sci. 5:167–172.

    Article  CAS  Google Scholar 

  • Mandal, L.N., and B. Mandal. 1987. Transformation of zinc fractions in rice-soils. Soil Sci. 143:205–212.

    Article  CAS  Google Scholar 

  • Martin, A.E., and R. Reeve. 1957. Chemical studies of podzolic illuvial horizons. II The use of acetyl acetone as extractant of translocated organic matter. J. Soil Sci. 8:279–286.

    Article  CAS  Google Scholar 

  • Mattigod, S.V., A.L. Page, and I. Thornton. 1986. Identification of some trace metal minerals in a mine-waste contaminated soil. Soil Sci. Soc. Am. J. 50:254–258.

    Article  CAS  Google Scholar 

  • McBride, M.B. 1981. Forms and distribution of Cu in solid and solution phases of soil. In J.F. Loneragan (ed.), Copper in Soils and Plants, pp. 24–45. Academic Press, Sydney, Australia.

    Google Scholar 

  • McKeague, J.A. 1967. An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of accumulation products in podzols and some other soils. Can. J. Soil Sci. 41:95–99.

    Article  Google Scholar 

  • McKeague, J. A., and J.H. Day. 1966. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13–22.

    Article  CAS  Google Scholar 

  • McLaren, R.G., and D.V. Crawford. 1973. Studies on soil copper. I. The fractionation of Cu in soils. J. Soil Sci. 24:172–181.

    Article  CAS  Google Scholar 

  • McLaren, R.G., D.M. Lawson, and R.S. Swift. 1986. The forms of cobalt in some Scottish soils as determined by extraction and isotopic exchange. J. Soil Sci. 37:223–234.

    Article  CAS  Google Scholar 

  • Mehra, O.P., and M.L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Proc. 7th Natl. Conf. Clays Clay Miner. 9:317–327.

    Google Scholar 

  • Miller, W.P., and W.W. McFee. 1983. Distribution of Cd, Zn, Cu and Pb in soils of industrial north western Indiana. J. Environ. Qual. 12:29–33.

    Article  CAS  Google Scholar 

  • Miller, W.P., D.C. Martens, and L.W. Zelazny. 1986a. Effect of sequence in extraction of trace metals from soils. Soil Sci. Soc. Am. J. 50:558–560.

    Google Scholar 

  • Miller, W.P., D.C. Martens, L.W. Zelazny, and ET. Kornegay. 1986b. Forms of solid-phase copper in copper-enriched swine manure. J. Environ. Qual. 15:69–72.

    Article  CAS  Google Scholar 

  • Ministry of Agriculture, Fisheries and Food. 1981. The Analysis of Agricultural Materials. Ref. Book 427, Ministry of Agriculture, Fisheries and Food, London.

    Google Scholar 

  • Mitchell, B.D., and R.C. MacKenzie. 1954. Removal of free iron oxide from clays. Soil Sci. 77:173–184.

    Article  CAS  Google Scholar 

  • Murthy, A.S.P. 1982. Zinc fractions in wetland rice soils and their availability to rice. Soil Sci. 133:150–154.

    Article  CAS  Google Scholar 

  • Neilsen, D, P.B. Hoyt, and A.F. MacKenzie. 1986. Distribution of soil Zn fractions in British Columbia interior orchard soils. Can. J. Soil Sci. 66:445–454.

    Article  CAS  Google Scholar 

  • Norrish, K., and R.M. Taylor. 1961. The isomorphous replacement of iron by aluminium in soil goethites. J. Soil Sci. 12:294–306.

    Article  CAS  Google Scholar 

  • Oliver, B.G. 1973. Heavy metal levels of Ottawa and Rideau river sediments. Environ. Sci. Technol. 7:135–137.

    Article  CAS  Google Scholar 

  • Olmstead, L.B., L.T. Alexander, and H.E. Middleton. 1930. A pipette method of mechanical analysis of soils based on improved dispersion procedures. U.S. Dept. of Agriculture, Tech. Bull. 170.

    Google Scholar 

  • Pawluck, S. 1972. Measurement of crystalline and amorphous iron removal in soils. Can. J. Soil Sci. 52:119–123.

    Article  Google Scholar 

  • Rappaport, B.D., D.C. Martens, T.W. Simpson, and R.B. Reneau. 1986. Prediction of available zinc in sewage sludge-amended soils. J. Environ. Qual. 15:133–136.

    Article  CAS  Google Scholar 

  • Rendell, P.A., G.E. Batley, and A.J. Cameron. 1980. Adsorption as a control of metal concentrations in sediment extracts. Environ. Sci. Technol. 14:314–318.

    Article  PubMed  CAS  Google Scholar 

  • Rich, C.I., and S.S. Obenshain. 1955. Chemical and clay mineral properties of a red-yellow podzolic soil derived from mica-schist. Soil Sci. Soc. Am. Proc. 19:334–339.

    Article  CAS  Google Scholar 

  • Robinson, W.O. 1927. The determination of organic matter in soil by means of hydrogen peroxide. J. Agric. Res. (Cambridge). 34:339–356.

    CAS  Google Scholar 

  • Saunders, W.M.H. 1959. Aluminium extracted by neutral citrate-dithionite reagent. Nature (London) 184:2037.

    Article  CAS  Google Scholar 

  • Schalscha, E.B., M. Morales, I. Ahumada, T. Schirado, and P.F. Pratt. 1980. Fractionation of Zn, Cu, Cr and Ni in waste water solids and in soil. Agrochimica 24:361–368.

    CAS  Google Scholar 

  • Schalscha, E.G., M. Morales, I. Vergara, and A.C. Chang. 1982. Chemical fractionation of heavy metals in waste-water affected soils. J. Water Pollut. Control Fed. 54:175–180.

    CAS  Google Scholar 

  • Schnitzer, M., and J.R. Wright. 1956. Notes on the extraction of organic matter from the B horizon of a podzol soil. Can. J. Soil Sci. 36:511–512.

    CAS  Google Scholar 

  • Schwertmann, U. 1964. The differentiation of iron oxides in soils by a photochemical extraction with acid ammonium oxalate. Z. Pflanzenernahr. Dueng. Bodenk. 105:194–201.

    Article  CAS  Google Scholar 

  • Scott, A.D., and L.F. Welsh. 1961. Release of non-exchangeable soil potassium during short periods of cropping and sodium tetraphenyl boron extraction. Soil Sci. Soc. Am. Proc. 25:128–130.

    Article  CAS  Google Scholar 

  • Scott, N.M., and G. Anderson. 1976. Sulphur, carbon and nitrogen contents of organic fractions from acetyl acetone extracts of soil. J. Soil Sci. 27:324–330.

    Article  CAS  Google Scholar 

  • Sedberry, J.E., and C.N. Reddy. 1976. The distribution of zinc in selected soils in Indiana. Commun. Soil Sci. Plant Anal. 7:787–795.

    Article  CAS  Google Scholar 

  • Shuman, L.M. 1979. Zn, Mn and Cu in soil fractions. Soil Sci. 127:10–17.

    Article  CAS  Google Scholar 

  • Silviera, D.J., and L.E. Sommers. 1977. Extractability of Cu, Zn, Cd and Pb in soils incubated with sewage sludge. J. Environ. Qual. 6:47–52.

    Article  CAS  Google Scholar 

  • Sims, J.L., and W.H. Patrick. 1978. The distribution of micronutrient cations in soil under conditions of varying redox potential and pH. Soil Sci. Soc. Am. J. 42:258–262.

    Article  CAS  Google Scholar 

  • Smith, B.F.L., and B.D. Mitchell. 1984. Characterisation of x-ray amorphous material in a Scottish soil by selective chemical techniques. Clay Miner. 19:737–744.

    Article  CAS  Google Scholar 

  • Soon, Y.K., and T.E. Bates. 1982. Chemical pools of Cd, Ni and Zn in polluted soils and some preliminary indications of their availability to plants. J. Soil Sci. 33:477–488.

    Article  CAS  Google Scholar 

  • Sposito, G., L.J. Lund, and A.C. Chang. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge I: Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Sci. Soc. Am. J. 46:260–264.

    Article  CAS  Google Scholar 

  • Stover, R.C., L.E. Sommers, and D.J. Silviera. 1976. Evaluation of metals in waste-water sludge. J. Water Poll. Control Fed. 48:2165–2175.

    CAS  Google Scholar 

  • Strachan, S.D., D.W. Nelson, and L.E. Sommers. 1983. Sewage sludge components soluble with non-aqueous solvents. J. Environ. Qual. 12:69–74.

    Article  CAS  Google Scholar 

  • Tamm, O. 1922. [Method for the estimation of the inorganic components of the gel complex in soils.] Medd. Skogsförsokanst. 19:387–404.

    CAS  Google Scholar 

  • Tessier, A., P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844–851.

    Article  CAS  Google Scholar 

  • Tiller, K.G., J.L. Honeysett, and M.P.C. de Bries. 1972. Soil zinc and its uptake by plants. II. Soil chemistry in relation to prediction of availability. Aust. J. Soil Res. 10:165–182.

    Article  CAS  Google Scholar 

  • Tokashiki, Y., J.B. Dixon, and D.C. Golden. 1986. Manganese oxide analysis in soils by combined x-ray diffraction and selective dissolution methods. Soil Sci. Soc. Am. J. 50:1079–1084.

    Article  CAS  Google Scholar 

  • Towe, K.M., and W.F. Bradley. 1967. Mineralogieal constitution of colloidal “hydrous ferric oxides.” J. Coll. Interface Sci. 24:384–392.

    Article  CAS  Google Scholar 

  • Troell, E. 1931. The use of sodium hypobromite for the oxidation of organic matter in the mechanical analysis of soils. J. Agric. Sci. (Cambridge) 21:476–484.

    Article  CAS  Google Scholar 

  • Viets, F.G. 1962. Chemistry and availability of micro-nutrients in soils. J. Agric. Food Chem. 10:174–178.

    Article  CAS  Google Scholar 

  • Viets, F.G., and W.L. Lindsay. 1973. Testing soils for Zn, Cu, Mn and Fe. In L.M. Walsh and J.D. Beaton (eds.), Soil Testing and Plant Analysis. Soil Science Society of America, Inc., Madison, Wisconsin.

    Google Scholar 

  • Wang, C., and P.A. Schuppli. 1986. Determining ammonium oxalate-extractable Si in soils. Can. J. Soil Sci. 66:751–755.

    Article  CAS  Google Scholar 

  • Wilber, W.G., and J.V. Hunter. 1979. Distribution of metals in street sweepings, storm-water solids and urban aquatic sediments. J. Water Pollut. Control Fed. 51:2810–2822.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Beckett, P.H.T. (1989). The Use of Extractants in Studies on Trace Metals in Soils, Sewage Sludges, and Sludge-Treated Soils. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3532-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3532-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8144-3

  • Online ISBN: 978-1-4612-3532-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics