Skip to main content

Distinctive Functional Properties of Limbic System Opioid Peptides

  • Chapter
Neuropeptides and Stress

Abstract

For the purpose of this discussion, it is important to note the prominent role that learning plays in stress. Many lines of research show that the effects of the same physical stimulus on measures of stress depend, to a degree, on the predictability of the stressful event and the response contingencies that are employed during testing. For example, uncontrolled shock has distinctive effects on behavior and brain neurochemical activity that are not observed in animals which receive the same amount of shock but are able to control its termination1,2. Independent of response contingencies, the predictability of stressful events reduces the impact of a wide range of stressors3–5. These phenomena clearly indicate that learning and its record in memory can mediate between environmental inputs and their effects on neurobiologic/neuroendocrine systems where stress is monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Overmier JB, Seligman ME. Effects of inescapable shock upon subsequent escape and avoidance responding. J Comp Physiol Psychol 1967;63:28–33.

    Article  PubMed  CAS  Google Scholar 

  2. Weiss JM, Goodman PA, Losito BG, et al. Behavioral depression produced by an uncontrollable stressor: relationship to norepinephrine, dopamine and serotonin levels in various regions of rat brain. Brain Res Rev 1981;3:167–205.

    Article  CAS  Google Scholar 

  3. Weiss JM. Somatic effects of predictable and unpredictable shock. Psychosom Med 1970;32:397–408.

    PubMed  CAS  Google Scholar 

  4. Bassett JR, Cairncross KD, King MG. Parameters of novelty, shock predictability, and response contingency in corticosterone release in the rat. Physiol Behav 1973;10:901–907.

    Article  PubMed  CAS  Google Scholar 

  5. Overmier JB. Toward a reanalysis of the causal structure of the learned helplessness syndrome. In: Affect, Conditioning and Cognition: Essays on the Determinants of Behavior. Brush FR, Overmier JB, eds. Lawrence Erlbaum Associates, 1985: p. 211–228.

    Google Scholar 

  6. Martinez JL Jr, Jensen RA, Messing RB, et al., eds. Endogenous Peptides and Learning and Memory Processes. New York: Academic Press, 1981.

    Google Scholar 

  7. Gallagher M. Re-viewing modulation of learning and memory. In: Memory Systems of the Brain: Animal and Human Cognitive Processes. Weinberger NM, McGaugh JL, Lynch G, eds. New York: Guilford Press, 1985: p. 311–334.

    Google Scholar 

  8. Izquierdo I. Effect of naloxone and morphine on various forms of memory in the rat: possible role of endogenous opiate mechanisms in memory consolidation. Psychopharmacology 1979;66:199–203.

    Article  PubMed  CAS  Google Scholar 

  9. Bostock E, Gallagher M. Naloxone-induced facilitation of latent inhibition in rabbits. Soc Neurosci Abstr 1982;8:148.

    Google Scholar 

  10. Rodgers RJ, Richards C, Precious JI. Naloxone administration following brief exposure to novelty reduces activity and rearing in mice upon 24-h retest: a conditioned aversion. Psychopharmacology 1984;82:322–326.

    Article  PubMed  CAS  Google Scholar 

  11. Martin S, Aigner T, Brown M, et al. Effects of naloxone on recognition memory in monkeys. Soc Neurosci Abstr 1984; 10:253.

    Google Scholar 

  12. Rossier J, French ED, Rivier C, et al. Foot-shock induced stress increases beta-endorphin in blood but not brain. Nature 1977;270:618–620.

    Article  PubMed  CAS  Google Scholar 

  13. Madden J 4th, Akil H, Patrick RL, et al. Stress—induced parallel changes in central opioid levels and pain responsiveness in the rat. Nature 1977;265:358–360.

    Article  PubMed  CAS  Google Scholar 

  14. Gambert SR, Garthwaite TL, Pontzer TH, et al. Fasting associated with decrease in hypothalamic beta-endorphin. Science 1977;210:452–453.

    Google Scholar 

  15. Morley JE, Elson MK, Levine AS, et al. The effects of stress on central nervous system concentrations of the opioid peptide, dynorphin. Peptides 1982;3:901–906.

    Article  PubMed  CAS  Google Scholar 

  16. Izquierdo I, Souza DO, Dias RD, et al. Beta-endorphin causes retrograde amnesia and is released from the rat brain by various forms of training and stimulation. Psychopharmacology 1980;70:173–177.

    Article  PubMed  CAS  Google Scholar 

  17. Collier TJ, Routtenberg A. Selective impairment of declarative memory following stimulation of dentate gyrus granule cells: a naloxone-sensitive effect. Brain Res 1984;310:384–387.

    Article  PubMed  CAS  Google Scholar 

  18. Liang KC, Messing RB, McGaugh JL. Naloxone attenuates amnesia caused by amygdaloid stimulation: the involvement of a central opioid system. Brain Res 1983;271:41–49.

    Article  PubMed  CAS  Google Scholar 

  19. Gray TS, Cassell MD, Kiss JZ. Distribution of pro-opiomelanocortin-derived peptides and enkephalins in the rat central nucleus of the amygdala. Brain Res 1984;306:354–358.

    Article  PubMed  CAS  Google Scholar 

  20. Khachaturian H, Watson SJ, Lewis ME, et al. Dynorphin immunocytochemistry in the rat central nervous system. Peptides 1982;3:941–954.

    Article  PubMed  CAS  Google Scholar 

  21. Khachaturian H, Lewis ME, Hollt V, et al. Telencephalic enkephalinergic systems in the rat brain. J Neurosci 1983;3:844–855.

    PubMed  CAS  Google Scholar 

  22. Finley JC, Lindström P, Petrusz P. Immunocytochemical localization of beta-endorphin-containing neurons in the rat brain. Neuroendocrinology 1981;33:28–42.

    Article  PubMed  Google Scholar 

  23. Gall C, Moore RY. Distribution of enkephalin, substance P, tyrosine hydroxylase, and 5-hydroxytryptamine immunoreactivity in the septal region of the rat. J Comp Neurol 1984;255:212–227.

    Article  Google Scholar 

  24. McLean S, Rothman RB, Herkenham M. Autoradiographic localization of mu and delta-opiate receptors in the forebrain of the rat. Brain Res 1986;378:49–60.

    Article  PubMed  CAS  Google Scholar 

  25. Moroni F, Cheney DL, Costa E. Inhibition of acetylcholine turnover in rat hippocampus by intraseptal injections of beta-endorphin and morphine. Naunyn Schmiedebergs Arch Pharmacol 1977;299:149–153.

    Article  PubMed  CAS  Google Scholar 

  26. Botticelli LJ, Wurtman RJ. Septohippocampal cholinergic neurons are regulated trans-synaptically by endorphin and corticotropin neuropeptides. J Neurosci 1982;2:1316–1321.

    PubMed  CAS  Google Scholar 

  27. Costa E, Panula P, Thompson HK, et al. The transsynaptic regulation of the septal-hippocampal cholinergic neurons. Life Sci 1983;32:165–179.

    Article  PubMed  CAS  Google Scholar 

  28. McGinty JF, Henriksen SJ, Goldstein A, et al. Opioid peptide identity and localization in hippocampus. Life Sci 1982;31:1797–1800.

    Article  PubMed  CAS  Google Scholar 

  29. Gall C, Brecha N, Karten HJ, et al. Localization of enkephalin-like immunoreactivity to identified axonal and neuronal populations of the rat hippocampus. J Comp Neurol 1981;198:335–350.

    Article  PubMed  CAS  Google Scholar 

  30. Gallagher M, Kapp BS. Manipulation of opiate activity in the amygdala alters memory processes. Life Sci 1978;23:1973–1979.

    Article  PubMed  CAS  Google Scholar 

  31. Gallagher M, Rapp PR, Fanelli RJ. Opiate antagonist facilitation of time-dependent memory processes: dependence upon intact norepinephrine function. Brain Res 1985;347:284–290.

    Article  PubMed  CAS  Google Scholar 

  32. Gallagher M, Kapp BS, McNall CL, et al. Opiate effects in the amygdala central nucleus on heart rate conditioning in rabbits. Pharmacol Biochem Behav 1981;14:497–505.

    Article  PubMed  CAS  Google Scholar 

  33. Kapp BS, Gallagher M, Frysinger RC, et al. The amygdala, emotion and cardiovascular conditioning. In: The Amygdaloid Complex. Ben-Ari Y, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1981: p. 355–366.

    Google Scholar 

  34. Sarter M, Markowitsch HJ. Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations. Behav Neurosci 1985;99:342–380.

    Article  PubMed  CAS  Google Scholar 

  35. Gallagher M, Kapp BS, Musty RE, et al. Memory formation: evidence for a specific neurochemical system in the amygdala. Science 1977;198:423–425.

    Article  PubMed  CAS  Google Scholar 

  36. Gallagher M, Kapp BS, Frysinger RC, et al. beta-Adrenergic manipulation in amygdala central n. alters rabbit heart rate conditioning. Pharmacol Biochem Behav 1980;12:419–426.

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka M, Kohno Y, Nakagawa R, et al. Naloxone enhances stress-induced increases in noradrenaline turnover in specific brain regions in rats. Life Sci 1982;30:1663–1669.

    Article  PubMed  CAS  Google Scholar 

  38. Lubow RE. Latent inhibition. Psychol Bull 1973;79:398–407.

    Article  PubMed  CAS  Google Scholar 

  39. Gallagher M, Bostock E, Meagher M. Effects of opiate manipulations on latent inhibition in rabbits: Sensitivity of the medial septal area to intracranial treatments. Behav Neurosci 1987;101:315–324.

    Article  PubMed  CAS  Google Scholar 

  40. Weiss KR, Freidman R, McGregor S. Effects of septal lesions on latent inhibition and habituation of the orienting response in rats. Acta Neurobiol Exp 1974;34:491–504.

    CAS  Google Scholar 

  41. Solomon PR, Moore JW. Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablation. J Comp Physiol Psychol 1975;89:1192–1203.

    Article  PubMed  CAS  Google Scholar 

  42. Hall G, Channeil S. Differential effects of contextual change on latent inhibition and on the habituation of an orienting response. J Exp Psychol Animal Behav Proc 1985;11:470–481.

    Article  Google Scholar 

  43. Gallagher M, King RA, Young NB. Opiate antagonists improve spatial memory. Science 1983;221:975–976.

    Article  PubMed  CAS  Google Scholar 

  44. Bostock E, Gallagher M. Effects of opiate manipulations on retention of novel spatial information: sensitivity of the medial septal area to β-endorphin and naloxone. Behav Neurosci, in press.

    Google Scholar 

  45. Winson J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 1978;201:160–163.

    Article  PubMed  CAS  Google Scholar 

  46. Morris RG, Garrud P, Rawlins JNP, et al. Place navigation impaired in rats with hippocampal lesions. Nature 1982;297:681–683.

    Article  PubMed  CAS  Google Scholar 

  47. Amaral DG, Kurz J. An analysis of the origins of the cholinergic and non-cholinergic projections to the hippocampal formation of the rat. J Comp Neurol 1985;240:37–59.

    Article  PubMed  CAS  Google Scholar 

  48. Gilad GM, Mahon BD, Finkelstein Y, et al. Stress-induced activation of the hippocampal cholinergic system and the pituitary-adrenocortical axis. Brain Res 1985;347:404–408.

    Article  PubMed  CAS  Google Scholar 

  49. Lai H, Zabawska J, Horita A. Sodium-dependent, high-affinity choline uptake in hippocampus and frontal cortex of the rat affected by acute restraint stress. Brain Res 1986;372:366–369.

    Article  PubMed  CAS  Google Scholar 

  50. Whishaw IQ. Cholinergic receptor blockade in the rat impairs locale but not taxon strategies for place navigation in a swimming pool. Behav Neurosci 1985;99:979–1005.

    Article  PubMed  CAS  Google Scholar 

  51. Decker M, Pelleymounter MA, Gallagher M. The effects of training on a spatial memory task on high affinity choline uptake in hippocampus and cortex in young adult and aged rats. J Neurosci 1988;8:90–99.

    PubMed  CAS  Google Scholar 

  52. Pascoe JP, Kapp BS. Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit. Behav Brain Res 1985;16:117–133.

    Article  PubMed  CAS  Google Scholar 

  53. Thompson RF, Berger TW, Berry SD, et al. Hippocampal substrate of classical conditioning. Physiol Psychol 1980;8:262–279.

    Google Scholar 

  54. Segal M, Disterhoft JF, Olds J. Hippocampal unit activity during classical aversive and appetitive conditioning. Science 1972;175:792–794.

    Article  PubMed  CAS  Google Scholar 

  55. Delacour J. Two neuronal systems are involved in a classical conditioning in the rat. Neuroscience 1984;13:705–715.

    Article  PubMed  CAS  Google Scholar 

  56. Meagher MW, Pelleymounter MA, Gallagher M. Effects of classical conditioning procedures on dynorphin A(1–8)—like immunoreactivity in the hippocampal formation of rats. Soc Neurosci Abstr 1986;12:1009.

    Google Scholar 

  57. Mauk MD, Warren JT, Thompson RF. Selective, naloxone-reversibie morphine depression of learned behavioral and hippocampal responses. Science 1982;216:434–436.

    Article  PubMed  CAS  Google Scholar 

  58. Foy MR, Stanton ME, Levine S, et al. Stress impairs long-term potentiation in rodent hippocampus. Soc Neurosci Abstr 1985;11:781.

    Google Scholar 

  59. Drugan RC, Maier SF. Analgesic and opioid involvement in the shock elicited activity and escape deficits produced by inescapable shock. Learn Motiv 1983;14:30–47.

    Article  Google Scholar 

  60. Amir S, Brown ZW, Amit Z. The role of endorphins in stress: evidence and speculations. Neurosci Biobehav Rev 1980;4:77–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gallagher, M., Meagher, M.W., Decker, M.W. (1989). Distinctive Functional Properties of Limbic System Opioid Peptides. In: Taché, Y., Morley, J.E., Brown, M.R. (eds) Neuropeptides and Stress. Hans Selye Symposia on Neuroendocrinology and Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3514-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3514-9_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8135-1

  • Online ISBN: 978-1-4612-3514-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics