Skip to main content

Calcitonin and Calcitonin Gene-Related Peptide

  • Chapter
Neuropeptides and Stress

Part of the book series: Hans Selye Symposia on Neuroendocrinology and Stress ((HANS SELYE SYMP))

  • 87 Accesses

Abstract

The Ca++ ion plays a critical role in neuronal transmission. Therefore, agents capable of modulating it can exert profound effects on the cell’s ability to interpret extracellular signals. In 1964, Hano et al.1 reported that intracisternal Ca++ administration antagonized the action of morphine, which, conversely, was potentiated by the Ca++ chelator EDTA. This early work was subsequently confirmed by Kakunaga et al.2, Harris et al.3, and Munoz and Fearon4, who introduced Ca++ intraventricularly (icv) or into the periaqueductal gray area (PAG). Mg++ and Mn++ were also found to act as opiate antagonists3, whereas the Ca++-specific chelator EGTA was demonstrated to potentiate morphine’s effect. Other investigations revealed that Ca++, Mg++ and Mn++ antagonized acetylcholine-induced antinociception5, but it was also noted that Ca++, but not Mg++ or Mn++, blocked the antinociception evoked by morphine6. Some of these authors were in agreement that ionophores (X-537A or A23187), which facilitate Ca++ uptake by the cell, enhanced the antagonistic effects of low concentrations of Ca++ on antinociceptive responses to morphine. Since ionophores mostly increase intracellular calcium7, it was postulated that the antagonism of morphine was due to alterations in intracellular events elicited by Ca++8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hano K, Kaneto H, Kakunaga T. Significance of calcium ion in the morphine analgesia. Jpn J Pharmacol 1964;14:227–229.

    Article  PubMed  CAS  Google Scholar 

  2. Kakunaga T, Kaneto H, Kotobuki H. Pharmacologic studies on analgesics— VII. Significance of the calcium ion in morphine analgesia. J Pharmacol Exp Ther 1966;153:134–141.

    PubMed  Google Scholar 

  3. Harris RA, Loh HH, Way EL. Effects of divalent cations, cation chelators, and an ionophore on morphine analgesia and tolerance. J Pharmacol Exp Ther 1975;195:488–498.

    PubMed  CAS  Google Scholar 

  4. Munoz FG, Fearon Z. Opioids/opiates analgesic response modified by calcium. Life Sci 1982;31:1237–1240.

    Article  PubMed  CAS  Google Scholar 

  5. Widman M, Rosin D, Dewey WL. Effects of divalent cations, lanthanum, cation chelators, and an ionophore on acetylcholine antinociception. J Pharmacol Exp Ther 1978;205:311–318.

    PubMed  CAS  Google Scholar 

  6. Vocci FJ Jr, Welch SP, Dewey WL. Differential effects of divalent cations, cation chelators and an ionophore (A23187) on morphine and dibutyryl gua-nosine 3′:5′-cyclic monophosphate antinociception. J Pharmacol Exp Ther 1980;214:463–466.

    PubMed  CAS  Google Scholar 

  7. Pressman BC. Biological applications of ionophores. Annu Rev Biochem 1976;45:501–530.

    Article  PubMed  CAS  Google Scholar 

  8. Chapman DB, Way EL. Metal ion interactions with opiates. Ann Rev Pharmacol Toxicol 1980;20:553–579.

    Article  CAS  Google Scholar 

  9. Chapman DB, Way EL. Modification of endorphin/enkephalin analgesia and stress-induced analgesia by divalent cations, a cation chelator, and an ionophore. Br J Pharmacol 1982;75:389–396.

    PubMed  CAS  Google Scholar 

  10. Ross DH, Medina MA, Cardenas HL. Morphine and ethanol: selective depletion of regional brain calcium. Science 1974;186:63–65.

    Article  PubMed  CAS  Google Scholar 

  11. Cardenas HL, Ross DH. Calcium depletions of synaptosomes after morphine treatment. Br J Pharmacol 1976;57:521–526.

    PubMed  CAS  Google Scholar 

  12. Ross DH, Lynne SC Jr, Cardenas HL. Selective control of calcium levels by naloxone. Life Sci 1976;18:789–795.

    Article  PubMed  CAS  Google Scholar 

  13. Harris RA, Yamamoto H, Loh HH, et al. Discrete changes in brain calcium with morphine analgesia, tolerance-dependence, and abstinence. Life Sci 1977;20:501–505.

    Article  PubMed  CAS  Google Scholar 

  14. Guerrero-Munoz F, Cerreta K, Guerrero ML, et al. Effects of morphine on synaptosomal Ca++ uptake. J Pharmacol Exp Ther 1979;209:132–136.

    PubMed  CAS  Google Scholar 

  15. Konno F, Takayanagi I. Effects of morphine, codeine and codeine-epoxide on calcium uptake into the synaptosomes isolated from naive and tolerant rats. Jpn J Pharmacol 1982;32:1143–1150.

    Article  PubMed  CAS  Google Scholar 

  16. Konno F, Takayanagi I. Relationship between synaptosomal calcium uptake and antinociceptive action of morphine. Jpn J Pharmacol 1983;33:619–626.

    Article  PubMed  CAS  Google Scholar 

  17. Harris RA, Yamamoto H, Loh HH, et al. Alterations in brain calcium localization during the development of morphine tolerance and dependence. In: Opiates and Endogenous Opioid Peptides. Proceedings of the International Narcotics Research Club Meeting. Kosterlitz HW, Archer S, eds. Amsterdam: North-Holland, 1976: p. 361–368.

    Google Scholar 

  18. Yamamoto H, Ozaki M, Kishioka S, et al. Effects of human calcitonin on the response to noxious stimuli and morphine-antinociception. Nippon Yakurigaku Zasshi 1985;85:33–48.

    Article  PubMed  CAS  Google Scholar 

  19. Jackson RL, Maier SF, Coon DJ. Effect of β-endorphin on calcium uptake in the brain. Science 1979;206:89–93.

    Article  Google Scholar 

  20. Copp DH, Cameron EC, Cheney BA, et al. Evidence for calcitonin—a new hormone from the parathyroid that lowers blood calcium. Endocrinology 1962;70:638–649.

    Article  PubMed  CAS  Google Scholar 

  21. Munson PL. Physiology and pharmacology of thyrocalcitonin. In: Parathyroid Gland, Sec 7, Vol VII. Handbook of Physiology, Aurbach GD, ed. Washington, D.C.: Am Physiol Soc, 1976: p. 443–464.

    Google Scholar 

  22. Pearse AGE, Polak JM. Cytochemical evidence for the neural crest origin of mammalian ultimobranchial C cells. Histochemie 1971;27:96–102.

    Article  PubMed  CAS  Google Scholar 

  23. Fisher JA, Sagar SM, Martin JB. Characterization and regional distribution of calcitonin binding sites in the rat brain. Life Sei 1981;29:663–671.

    Article  Google Scholar 

  24. Henke H, Tschopp FA, Fischer JA. Distinct binding sites for calcitonin gene-related peptide and salmon calcitonin in rat central nervous system. Brain Res 1985;360:165–171.

    Article  PubMed  CAS  Google Scholar 

  25. Olgiati VR, Guidobono F, Netti C, et al. Localization of calcitonin binding sites in rat central nervous system: evidence of its neuroactivity. Brain Res 1983;265:209–215.

    Article  PubMed  CAS  Google Scholar 

  26. Amara SG, Jonas V, Rosenfeld MG, et al. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 1982;298:240–244.

    Article  PubMed  CAS  Google Scholar 

  27. Rosenfeld MG, Mermod JJ, Amara SG, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 1983;304:129–135.

    Article  PubMed  CAS  Google Scholar 

  28. Lee Y, Takami K, Kawai Y, et al. Distribution of calcitonin gene-related peptide in the rat peripheral nervous system with reference to its co-existence with substance P. Neuroscience 1985;15:1227–1237.

    Article  PubMed  CAS  Google Scholar 

  29. Mulderry PK, Ghatei MA, Rodrigo J, et al. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience 1985;14:947–954.

    Article  PubMed  CAS  Google Scholar 

  30. Tippins JR, Morris HR, Panico M, et al. The myotropic and plasma-calcium modulating effects of calcitonin gene-related peptide (CGRP). Neuropeptides 1984;4:425–434.

    Article  PubMed  CAS  Google Scholar 

  31. Goltzman D, Mitchell J. Interaction of calcitonin and calcitonin gene-related peptide at receptor sites in target tissues. Science 1985;227:1343–1345.

    Article  PubMed  CAS  Google Scholar 

  32. Guttman S. Chemistry and structure-activity relationship of natural and synthetic calcitonins. In: Calcitonin, 1980, Pecile A, ed. Excerpta Medica International Congress Series No. 540, 1984: p. 11–24.

    Google Scholar 

  33. Tobler PH, Tschopp FA, Dambacher MA, et al. Salmon and human calcitonin-like peptides in man. Clin Endocrinol 1984;20:253–259.

    Article  CAS  Google Scholar 

  34. Henke H, Tobler PH, Fischer JA. Localization of salmon calcitonin binding sites in rat brain by autoradiography. Brain Res 1983;272:373–377.

    Article  PubMed  CAS  Google Scholar 

  35. Braga P, Ferri S, Santagostino A, et al. Lack of opiate receptor involvement in centrally induced calcitonin analgesia. Life Sci 1978;22:971–977.

    Article  PubMed  CAS  Google Scholar 

  36. Candeletti S, Cavichini E, Romualdi P, et al. Antinociceptive activity of intrathecal opioid and non-opioid peptides ascertained by different analgesimetric procedures. Drugs Exptl Clin Res 1984;12:877–882.

    Google Scholar 

  37. Welch SP, Cooper CW, Dewey WL. Antinociceptive activity of salmon calcitonin injected intraventricularly in mice: modulation of morphine antinociception. J Pharmacol Exp Ther 1986;237:54–58.

    PubMed  CAS  Google Scholar 

  38. Spampinato S, Candeletti S, Cavicchini E, et al. Antinociceptive activity of salmon calcitonin injected intrathecally in the rat. Neurosci Lett 1984;45:135–139.

    Article  PubMed  CAS  Google Scholar 

  39. Clementi G, Amico-Roxas M, Rapisarda E, et al. The analgesic activity of calcitonin and the central serotonergic system. Eur J Pharmacol 1985; 108:71–75.

    Article  PubMed  CAS  Google Scholar 

  40. Guidobono F, Netti C, Sibilia V, et al. Role of catecholamines in calcitonin-induced analgesia. Pharmacology 1985;31:342–348.

    Article  PubMed  CAS  Google Scholar 

  41. Pecile A, Guidobono F, Sibilia V, et al. Calcitonin: a candidate for a neuromodulator of pain inhibiting systems. In: Endocrinology, Labrie F, Prouly L, eds. Amsterdam: Elsevier Science Publishers B.V., 1984: p. 938–941.

    Google Scholar 

  42. Fabbri A, Fraioli F, Pert CB, et al. Calcitonin receptors in the rat mesencephalon mediate its analgesic actions: autoradiographic and behavioral analyses. Brain Res 1985;343:205–215.

    Article  PubMed  CAS  Google Scholar 

  43. Wiesenfeld-Hallin Z, Persson A. Subarachnoid injection of salmon calcitonin does not induce analgesia in rats. Eur J Pharmacol 1984;104:375–377.

    Article  PubMed  CAS  Google Scholar 

  44. Gibson SJ, Polak JM, Bloom SR, et al. Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J Neurosci 1984;4:3101–3111.

    PubMed  CAS  Google Scholar 

  45. Koida M, Yamamoto Y, Nakamuta H, et al. A novel effect of salmon calcitonin on in vitro Ca-uptake by rat brain hypothalamus: the regional and hormonal specificities. Jpn J Pharmacol 1982;32:981–986.

    Article  PubMed  CAS  Google Scholar 

  46. Lenz HJ, Mortrud MT, Rivier JE, et al. Calcitonin gene related peptide inhibits basal, pentagastrin, histamine and bethanecol stimulated gastric acid secretion. Gut 1985;26:550–555.

    Article  PubMed  CAS  Google Scholar 

  47. Morley JE, Levine AS, Silvis SE. Intraventricular calcitonin inhibits gastric acid secretion. Science 1981;214:671–673.

    Article  PubMed  CAS  Google Scholar 

  48. Morley JE, Krahn DD, Gosnell BA, et al. Interrelationships between calcitonin and other modulators of feeding behavior. Psychopharmacol Bull 1984;20:463–465.

    PubMed  CAS  Google Scholar 

  49. Care AD, Bruce JB, Boelkins J, et al. Role of pancreozymin-cholecystokinin and structurally related compounds as calcitonin secretagogues. Endocrinology 1971;89:262–271.

    Article  PubMed  CAS  Google Scholar 

  50. Watkins LR, Kinscheck IB, Mayer DJ. Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide. Science 1984;224:395–396.

    Article  PubMed  CAS  Google Scholar 

  51. Tagliaro F, Capra F, Dorizzi R, et al. High serum calcitonin levels in heroin addicts. J Endocrinol Invest 1984;7:331–333.

    PubMed  CAS  Google Scholar 

  52. Clementi G, Amico-Roxas M, Nicoletti F, et al. Hyperalgesic activity of parathyroid hormone and its fragments in male rats. Brain Res 1984;295:376–377.

    Article  PubMed  CAS  Google Scholar 

  53. Clementi G, Drago F, Prato A, et al. Effects of calcitonin, parathyroid hormone and its related fragments on acquisition of active avoidance behavior. Physiol Behav 1984;33:913–916.

    Article  PubMed  CAS  Google Scholar 

  54. Blaustein MP, Weisman WP. Potassium ions and calcium ion fluxes in isolated nerve terminals. In: Cholinergic Mechanisms in the CNS. Heilbroun E, Winter A, eds. Stockholm: Research Institute of National Defense, 1970: p. 291–305.

    Google Scholar 

  55. Blaustein MP. The ins and outs of calcium transport in squid axons: internal and external ion activation of calcium efflux. Fed Proc 1976;35:2574–2578.

    PubMed  CAS  Google Scholar 

  56. Blaustein MP, Ratzlaff RW, Kendrick NC, et al. Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J Gen Physiol 1978;72:15–41.

    Article  PubMed  CAS  Google Scholar 

  57. End DW, Carchman RA, Dewey WL. Interactions of narcotics with synaptosomal calcium transport. Biochem Pharmacol 1981;30:674–676.

    Article  PubMed  CAS  Google Scholar 

  58. Sanfaçon G, Houde-Depuis M, Vanier R, et al. Calcium-induced modification of inhibition of acetylcholine release by morphine. J Neurochem 1977;28:881–884.

    Article  PubMed  Google Scholar 

  59. Jhamandas K, Sawynok J, Sutak M. Antagonism of morphine action on brain acetylcholine release by methylxanthines and calcium. Eur J Pharmacol 1978;49:309–312.

    Article  PubMed  CAS  Google Scholar 

  60. Pedigo NW, Dewey WL, Harris LS. Determination and characterization of the antinociceptive activity of intraventricularly administered acetylcholine in mice. J Pharmacol Exp Ther 1975;193:845–852.

    PubMed  CAS  Google Scholar 

  61. Vocci FJ, Petty SK, Dewey WL. Antinociceptive action of the butyryl derivatives of cyclic guanosine 3′:5′-monophosphate. J Pharmacol Exp Ther 1978;207:892–898.

    PubMed  CAS  Google Scholar 

  62. Rezek M, Havlicek V, Leybin L, et al. Opiate-like naloxone-reversible actions of somatostatin given intracerebraily. Can J Physiol Pharmacol 1978,56:227–231.

    Article  PubMed  CAS  Google Scholar 

  63. Sawynok J, Pinsky C, LaBella FS. Minireview on the specificity of naloxone as an opiate antagonist. Life Sci 1979;25:1621–1632.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Welch, S.P., Dewey, W.L. (1989). Calcitonin and Calcitonin Gene-Related Peptide. In: Taché, Y., Morley, J.E., Brown, M.R. (eds) Neuropeptides and Stress. Hans Selye Symposia on Neuroendocrinology and Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3514-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3514-9_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8135-1

  • Online ISBN: 978-1-4612-3514-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics