Skip to main content

Modulation of Memory Storage Processes

  • Chapter
Memory: Interdisciplinary Approaches

Abstract

It seems most fitting that the first of a series of symposia commemorating G. Stanley Hall’s contribution to psychology is devoted to the topic of memory. Memory processes are central to all aspects of psychological functioning: Our consciousness and our actions are shaped by our experiences. And our experiences shape us only because of their lingering consequences, which we term, collectively, memory. Memory is, of course, not the sole determiner of our experience and behavior. But in bridging the past and the present, memory serves a central coordinating role. Thus, understanding of the nature and bases of memory is essential for understanding of the broad range of problems that interested G. Stanley Hall. An analysis of memory processes seems appropriate as a beginning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agranoff, B.W. (1980). Biochemical events mediating the formation of short-term and long-term memory. In Y. Tsukada & B.W. Agranoff (Eds.), Neurobiological basis of learning and memory. New York: John Wiley.

    Google Scholar 

  • Alkon, D.L. (1985). Conditioning-induced changes of hermissenda channels: Relevance to mammalian brain function. In N.M. Weinberger, J.L. McGaugh, & G. Lynch (Eds.), Memory systems of the brain: Animal and human cognitive processes (pp. 9–26). New York: Guilford Press.

    Google Scholar 

  • Arbilla, S., & Langer, S.Z. (1978). Morphine and beta-endorphin inhibit release of noradrenaline from cerebral cortex but not of dopamine from rat striatum. Nature, 271, 559–561.

    Article  PubMed  Google Scholar 

  • Bennett, C., Liang, K.C., McGaugh, J.L. (1985). Depletion of adrenal catecholamines alters the amnestic effect of amygdala stimulation. Behavioural Brain Research, 15, 83–91.

    Article  PubMed  Google Scholar 

  • Bird, S.J., & Kuhar, M.J. (1977). Iontophoretic application of opiates to the locus eoeruleus. Brain Research, 122, 523–533.

    Article  PubMed  Google Scholar 

  • Bloch, V. (1970). Facts and hypotheses concerning memory consolidation. Brain Research, 24, 561–575.

    Google Scholar 

  • Bloch, V., & Laroche, S. (1984). Facts and hypotheses related to the search for the engram. In G. Lynch, J.L. McGaugh, & N.M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 249–260). New York: Guilford Press.

    Google Scholar 

  • Bloom, F.E., & McGinty, J.F. (1981). Cellular distribution and function of endorphins. In J.L. Martinez, Jr., R.A. Jensen, R.B. Messing, H. Rigter, & J.L. McGaugh (Eds.), Endogenous peptides and learning and memory processes (pp. 199–230). New York: Academic Press.

    Google Scholar 

  • Borrell, J., de Kloet, E.R. Versteeg, D.H.G. & Bohus, B. (1983). The role of adrenomedullary catecholamines in the modulation of memory by vasopressin. In E. Endroczi, D. de Wied, L. Angelucci, & V. Scapagnini (Eds.), Integrative neurohumoral mechanisms: developments in neuroscience (pp. 85–90). Amsterdam: Elsevier/North Holland.

    Google Scholar 

  • Borrell, J., del Cerro, S., Guaza, C., Zubiaur, M., & de Wied, D. (1985). Interactions between adrenaline and neuropeptides on modulation of memory processes. In J.L. McGaugh (Ed), Contemporary psychology: biological processes and theoretical issues (pp. 17–36). Amsterdam: North Holland.

    Google Scholar 

  • Bowman, R.E., Heironimus, M.P., & Harlow, H.F. (1979). Pentylenetetrazol: Posttraining injection facilitates discrimination learning in rhesus monkeys. Physiological Psychology, 7, 265–268.

    Google Scholar 

  • Brunswik, E. (1943). Organismic achievement and environmental probability. Psychological Review, 50, 255–272.

    Article  Google Scholar 

  • Carrasco, M.A., Dias, R.D., Perry, M.L.S., Wofchuk, S.T., Souza, D.O., & Izquierdo, I. (1982). Effect of morphine, ACTH, epinephrine, Met-, Leu- and des-Tyr-Met-enkephalin on beta-endorphin-like immunoreactivity of rat brain. Psychoneuroendocrinology, 7, 229–234.

    Article  PubMed  Google Scholar 

  • Castellano, C. (1975). Effects of morphine and heroin on discrimination learning and consolidation in mice. Psychopharmacology, 42, 235–242.

    Article  Google Scholar 

  • Castellano, C. (1981). Strain-dependent effects on naloxone on discrimination learning in mice. Psychopharmacology, 73, 291–295.

    Article  Google Scholar 

  • Cherkin, A. (1969). Kinetics of memory consolidation: Role of amnesic treatment parameters. Proceedings of the National Academy of Sciences, 63, 1094–1101.

    Article  Google Scholar 

  • Coyle, J.T., Price, D.L., & DeLong, M.R. (1983). Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science, 219, 1184–1189.

    Article  PubMed  Google Scholar 

  • de Wied, D. (1984). Neurohypophyseal hormone influences on learning and memory processes. In G. Lynch, J.L. McGaugh & N.M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 289–312). New York: Guilford Press.

    Google Scholar 

  • Duncan, C.P. (1949). The retroactive effect of electroshock on learning. Journal of Comparative and Physiological Psychology, 42, 32–44.

    Article  PubMed  Google Scholar 

  • Ellis, M.E., Berman, R.F., & Kesner, R.P. (1983). Amnesia attenuation specificity: Propranolol reverses norepinephrine but not cycloheximide-induced amnesia. Pharmacology, Biochemistry and Behavior, 19, 733–736.

    Article  Google Scholar 

  • Ellis, M.E., & Kesner, R.P. (1981). Physostigmine and norepinephrine: Effects of injection into the amygdala on taste association. Physiology and Behavior, 27, 203–209.

    Article  PubMed  Google Scholar 

  • Ellis, M.E., & Kesner, R.P. (1983). The noradrenergic system of the amygdala and aversive memory processing. Behavioral Neuroscience, 97, 399–415.

    Article  PubMed  Google Scholar 

  • Fallon, J.H. (1981). Histochemical characterization of dopaminergic, noradrenergic and serotonergic projections to the amygdala. In Y. Ben-Ari (Ed), The amygdaloid complex (pp. 175–184). Amsterdam: Elsevier/North Holland.

    Google Scholar 

  • Fanelli, R.J., Rosenberg, R.A., & Gallagher, M. (1985). Role of noradrenergic function in the opiate antagonist facilitation of spatial memory. Behavioral Neuroscience, 99, 751–755.

    Article  PubMed  Google Scholar 

  • Gallagher, M. (1985). Re-viewing modulation of learning and memory. In N.M. Weinberger, J.L. McGaugh & G. Lynch (Eds.), Memory systems of the brain: Animal and human cognitive processes (pp. 311–334). New York: Guilford Press.

    Google Scholar 

  • Gallagher, M., Fanelli, R.J., & Bostock, E. (1985). Opioid peptides: Their position among other neuroregulators of memory. In J.L. McGaugh (Ed), Contemporary psychology: Biological processes and theoretical issues (pp. 69–94). Amsterdam: North Holland.

    Google Scholar 

  • Gallagher, M., & Kapp, B.S. (1978). Manipulation of opiate activity in the amygdala alters memory processes. Life Sciences, 23, 1973–1978.

    Article  PubMed  Google Scholar 

  • Gallagher, M., Kapp, B.S., Pascoe, J.P., & Rapp, P.R. (1981). A neuropharmacology of amygdaloid systems which contribute to learning and memory. In Y. Ben-Ari (Ed), The amygdaloid complex (pp. 343–354). Amsterdam: Elsevier/North Holland.

    Google Scholar 

  • Gallagher, M., Rapp, P.R., & Fanelli, R.J. (1985). Opiate antagonist facilitation of time-dependent memory processes: Dependence upon intact norepinephrine function. Brain Research, 347, 284–290.

    Article  PubMed  Google Scholar 

  • Gerard, R.W. (1949). Physiology and psychiatry. American Journal of Psychiatry, 106, 161–173.

    PubMed  Google Scholar 

  • Gold, P.E., & McCarty, R. (1981). Plasma catecholamines: Changes after footshock and seizure-producing frontal cortex stimulation. Behavioral and Neural Biology, 31, 247–260.

    Article  PubMed  Google Scholar 

  • Gold, P.E., & McGaugh, J.L. (1975). A single-trace, two process view of memory storage processes. In D. Deutsch & J.A. Deutsch (Eds.), Short-term memory (pp. 355–378). New York: Academic Press.

    Google Scholar 

  • Gold, P.E., & van Buskirk, R. (1975). Facilitation of time-dependent memory processes with posttrial epinephrine injections. Behavioral Biology, 13, 145–153.

    Article  PubMed  Google Scholar 

  • Gold, P.E., & van Buskirk, R. (1978). Posttraining brain norepinephrine concentrations: Correlation with retention performance of avoidance training with peripheral epinephrine modulation of memory processing. Behavioral Biology, 23, 509–520.

    Article  PubMed  Google Scholar 

  • Gold, P.E., & Zornetzer, S.F. (1983). The mnemon and its juices: Neuro-modulation of memory processes. Behavioral and Neural Biology, 38, 151–189.

    Article  PubMed  Google Scholar 

  • Greenough, W.T. (1985). The possible role of experience-dependent synaptogenesis, or synapses on demand, in the memory process. In N.M. Weinberger, J.L. McGaugh & G. Lynch (Eds.), Memory systems of the brain: Animal and human cognitive processes (pp. 77–106). New York: Guilford Press.

    Google Scholar 

  • Hawkins, R.D., & Kandel, E.R. (1984). Steps toward a cell-biological alphabet for elementary forms of learning. In G. Lynch, J.L. McGaugh & N.M. Weinberger, (Eds.), Neurobiology of learning and memory (pp. 385–404). New York: Guilford Press.

    Google Scholar 

  • Hebb, D.O. (1949). The organization of behavior. New York: John Wiley.

    Google Scholar 

  • Hull, C.L. (1943). Principles of behavior. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Introini, I.B., McGaugh, J.L., & Baratti, C.M. (1985). Pharmacological evidence of a central effect of naltrexone, morphine and beta-endorphin and a peripheral effect of Met- and Leu-enkephalin on retention of an inhibitory response in mice. Behavioral and Neural Biology, 44, 434–446.

    Article  PubMed  Google Scholar 

  • Introini-Collison, I.B., & Baratti, C.M. (1986). Opioid peptidergic systems may modulate the activity of β-adrenergic mechanisms during memory consolidation processes. Behavioral and Neural Biology, 46, 227–241.

    Article  PubMed  Google Scholar 

  • Introini-Collison, I., & McGaugh, J.L. (1986). Epinephrine modulates long-term retention of an aversively motivated discrimination task. Behavioral and Neural Biology, 45, 358–365.

    Article  PubMed  Google Scholar 

  • Introini-Collison, I., & McGaugh, J.L. (1987). Naloxone and beta-endorphin alter the effects of posttraining epinephrine on retention of an inhibitory avoidance response. Psychopharmacology, 92, 229–235.

    Article  PubMed  Google Scholar 

  • Introini-Collison, I.B., Cahill, L., Baratti, C.M., McGaugh, J.L. (1987). Dynorphin induces task-specific impairment of memory. Psychobiology, 15, 171–174.

    Google Scholar 

  • Izquierdo, I. (1979). Effect of naloxone and morphine on various forms of memory in the rat: Possible role of endogenous opiate mechanisms in memory consolidation. Psychopharmacology, 66, 199–203.

    Article  PubMed  Google Scholar 

  • Izquierdo, I., & Dias, R.D. (1985). Influence on memory of posttraining and pretest injections of ACTH, vasopressin, epinephrine, or β-endorphin, and their interaction with naloxone. Psychoneuronedocrinology, 10, 165–172.

    Article  Google Scholar 

  • Izquierdo, I., & Graudenz, M. (1980). Memory facilitation by naloxone is due to release of dopaminergic and beta-adrenergic systems from tonic inhibition. Psychopharmacology, 67, 265–268.

    Article  PubMed  Google Scholar 

  • Izquierdo, I., & McGaugh, J.L. (1985). Effect of a novel experience prior to training or testing on retention of an inhibitory avoidance response in mice: Involvement of an opioid system. Behavioral and Neural Biology, 44, 228–238.

    Article  PubMed  Google Scholar 

  • Izquierdo, I., Souza, D.O., Dias, R.D., Carrasco, M.A., Wolkmer, N., Perry, M.L.S., & Netto, C.A. (1984). Effect of various behavioral training and testing procedures on brain B-endorphin-like immunoreactivity, and the possible role of B-enodorphin in behavioral regulation. Psychoneuroendocrinology, 9, 381–389.

    Article  PubMed  Google Scholar 

  • John, E.R. (1967). Mechanisms of memory (p. 468). New York: Academic Press.

    Google Scholar 

  • Kesner R.P. (1982). Brain stimulation: Effects on memory. Behavioral and Neural Biology, 36, 315–367.

    Article  PubMed  Google Scholar 

  • Kety, S. (1972). Brain catecholamines, affective states and memory. In J.L. McGaugh, (Ed.), The chemistry of mood, motivation and memory (pp. 65–80). New York: Raven Press.

    Google Scholar 

  • Korf, J., Bunney, B.S., & Aghajanian, G.K. (1974). Noradrenergic neurons: Morphine inhibition of spontaneous activity. European Journal of Pharmacology, 25, 165–169.

    Article  PubMed  Google Scholar 

  • Lashley, K.S. (1930). Basic neural mechanisms in behavior. Psychological Review, 37, 1–24.

    Article  Google Scholar 

  • Lashley, K.S. (1950). In search of the engram. In Symposium, Society of Experimental Biology (pp. 454–482). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Lee, K., Schottler, F., Oliver, M., & Lynch, G. (1980). Brief bursts of high frequency stimulation produce two types of structural changes in rat hippocampus. Journal of Neurophysiology, 44, 247–258.

    PubMed  Google Scholar 

  • Liang, K.C., Bennett, C., & McGaugh, J.L. (1985). Peripheral epinephrine modulates the effects of posttraining amygdala stimulation on memory. Behavioral Brain Research, 15, 93–100.

    Article  Google Scholar 

  • Liang, K.C., Juler, R., & McGaugh, J.L. (1986). Modulating effects of posttraining epinephrine on memory: Involvement of the amygdala noradrenergic system. Brain Research, 368, 125–133.

    Article  PubMed  Google Scholar 

  • Liang, K.C., & McGaugh, J.L. (1983). Lesions of the stria terminalis attenuate the enhancing effect of posttraining epinephrine on retention of an inhibitory avoidance response. Behavioural Brain Research, 9, 49–58.

    Article  PubMed  Google Scholar 

  • Liang, K.C., McGaugh, J.L., Martinez, Jr., J.L., Jensen, R.A., Vasquez, B.J., & Messing, R.B. (1982). Posttraining amygdaloid lesions impair retention of an inhibitory avoidance response. Behavioural Brain Research, 4, 237–249.

    Article  PubMed  Google Scholar 

  • Liang, K.C., Messing, R.B., & McGaugh, J.L. (1983). Naloxone attenuates amnesia caused by amygdaloid stimulation: The involvement of a central opioid system. Brain Research, 271, 41–49.

    Article  PubMed  Google Scholar 

  • Llorens, C., Martres, M.P., Baudry, M., & Schwartz, J.C. (1978). Hypersensitivity to noradrenaline in cortex after chronic morphine: Relevance to tolerance and dependence. Nature, 274, 603–605.

    Article  PubMed  Google Scholar 

  • Lynch, G. (1986). Synapses, circuits, and the beginnings of memory (p. 122). Cambridge, MA: MIT Press.

    Google Scholar 

  • Lynch, G., & Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis. Science, 224, 1057–1063.

    Article  PubMed  Google Scholar 

  • Mackintosh, N.J. (1983). Conditioning and associative learning. Oxford, England: Oxford University Press.

    Google Scholar 

  • Mah, C.J., & Albert, D.J. (1973). Electroconvulsive shock-induced retrograde amnesia: An analysis of the variation in the length of the amnesia gradient. Behavioral Biology, 9, 517–540.

    Article  PubMed  Google Scholar 

  • McGaugh, J.L. (1968). A multi-trace view of memory storage. In D. Bovet, F. Bovet-Nitti, and A. Oliverio (Eds.), Recent advances in learning and retention. (pp. 13–24). Rome: Roma Academia Nazionale dei Lincei.

    Google Scholar 

  • McGaugh, J.L. (1973). Drug facilitation of learning and memory. Annual Review of Pharmacology, 13, 229–241.

    Article  PubMed  Google Scholar 

  • McGaugh, J.L. (1983). Hormonal influences on memory. Annual Review of Psychology, 34, 297–323.

    Article  PubMed  Google Scholar 

  • McGaugh, J.L., Bennett, M.C., Liang, K.C., Juler, R.G., and Tarn, D. (1987). Retention-enhancing effects of posttraining epinephrine is not blocked by dexamethasone. Psychobiology, 15, 343–344.

    Google Scholar 

  • McGaugh, J.L., & Gold, P.E. (1976). Modulation of memory by electrical stimulation of the brain. In M.R. Rosenzweig & E.L. Bennett (Eds.), Neural mechanisms of learning and memory (pp. 549–560). Cambridge, MA: MIT Press.

    Google Scholar 

  • McGaugh, J.L., & Gold, P.E. (in press). Hormonal modulation of memory. In R.B. Brush & S. Levine (Eds.), Psychoendocrinology. New York: Academic Press.

    Google Scholar 

  • McGaugh, J.L., & Herz, M.J. (1972). Memory consolidation (p. 204). San Francisco: Albion Publishing.

    Google Scholar 

  • McGaugh, J.L., Introini-Collison, I.B., Juler, R.G., & Izquierdo, I. (1986). Stria terminalis lesions attenuate the effects of posttraining naloxone and b-endorphin on retention. Behavioral Neuro science, 100, 839–844.

    Article  Google Scholar 

  • McGaugh, J.L., Liang, K.C., Bennett, C., & Sternberg, D.B. (1984). Adrenergic influences on memory storage: Interaction of peripheral and central systems. In G. Lynch, J.L. McGaugh & N.M. Weinberger (Eds.), Neurobiology of learning and memory, (pp. 313–333). New York: Guilford Press.

    Google Scholar 

  • McGaugh, J.L., & Petrinovich, L. (1959). The effect of strychnine sulphate on maze-learning. American Journal of Psychology, 72, 99–102.

    Article  Google Scholar 

  • Menzel, R. (1983). Neurobiology of learning and memory: The honeybee as a model system. Naturwissenschaften, 70, 504–511.

    Article  PubMed  Google Scholar 

  • Messing, R.B., Jensen, R.A., Martinez Jr., J.L., Spiehler, V.R., Vasquez, B.J., Soumireu-Mourat, B., Liang, K.C., & McGaugh, J.L. (1979). Naloxone enhancement of memory. Behavioral and Neural Biology, 27, 266–275.

    Article  PubMed  Google Scholar 

  • Milner, B. (1966). Amnesia following operation on the temporal lobes. In C.W.M. Whitty & O.L. Zangwill (Eds.), Amnesia (pp. 109–133). London: Butterworths.

    Google Scholar 

  • Mishkin, M., & Aggleton, J. (1981). Multiple functional contributions of the amygdala in the monkey. In Y. Ben-Ari (Ed), The amygdaloid complex (pp. 409–420). Amsterdam: Elsevier/North Holland.

    Google Scholar 

  • Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural systems. In G. Lynch, J.L. McGaugh & N.M. Weinberger (Eds.), Neurobiology of learning and memory, (pp. 65–77). New York: Guilford Press.

    Google Scholar 

  • Montel, H., Starke, K., & Weber, F. (1974). Influence of morphine and naloxone on the release of noradrenaline from rat brain cortex slices. Naunyn-Schmiedeberg’s Archives of Pharmacology, 283, 357–369.

    Article  PubMed  Google Scholar 

  • Morris, R.G.M. (1984). Is the distinction between procedural and declarative memory useful with respect to animal models of amnesia? In G. Lynch, J.L. McGaugh & N.M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 119–124). New York: Guilford Press.

    Google Scholar 

  • Mueller, G.E., & Pilzecker, A. (1900) Experimentelle Beitrage zur Lehre vom Gedächtnis. Zeitschrift für Psychologie, 1, 1–288.

    Google Scholar 

  • Murray, E.A., & Mishkin, M. (1985). Amygdala impairs crossmodal association in monkeys. Science, 228, 604–606.

    Article  PubMed  Google Scholar 

  • Nakamura, S., Tepper, J.M., Young, S.J., Ling, N., & Groves, P.M. (1982). Noradrenergic terminal excitability: Effects of opioids. Neuroscience Letters, 30, 57–62.

    Article  PubMed  Google Scholar 

  • Pepper, C.M., & Henderson, G.H. (1980). Opiates and opioid peptides hyperpolarize locus coeruleus neurons in vitro. Science, 209, 394–396.

    Article  PubMed  Google Scholar 

  • Price, J.L. (1981). The efferent projections of the amygdaloid complex in the rat, cat and monkey. In Y. Ben-Ari (Ed), The amygdaloid complex (pp. 121–132). Amsterdam: Elsevier/North Holland.

    Google Scholar 

  • Reisine, T.D., Heisler, S., Hook, V.Y.H., & Axelrod, J. (1983). Activation of B2-adrenergic receptors on mouse anterior pituitary tumor cells increases cyclic adenosine 3 prime: 5 prime-monophosphate synthesis and adrenocorticotropin release. Journal of Neuroscience, 32, 174–178.

    Google Scholar 

  • Rosenzweig, M.R., & Bennett, E.L. (1976). Enriched environments: Facts, factors, and fantasies. In L. Petrinovich & J.L. McGaugh (Eds.), Knowing, thinking and believing (pp. 179–214). New York: Plenum.

    Google Scholar 

  • Russell, W.R., & Nathan, P.W. (1946). Traumatic amnesia. Brain, 69, 280–300.

    Google Scholar 

  • Sarter, M., & Markowitsch, H.J. (1985a). Involvement of the amygdala in learning and memory: A critical review, with emphasis on anatomical relations. Behavioral Neuroscience, 99(2), 342–380.

    Article  PubMed  Google Scholar 

  • Sarter, M., & Markowitsch, H.J. (1985b). The amygdala’s role in human mnemonic processing. Cortex, 21, 7–24.

    PubMed  Google Scholar 

  • Saunders, R.C., Murray, E.A., & Mishkin, M. (1984). Further evidence that the amygdala and hippocampus contribute equally to recognition memory. Neuropsychologia, 22, 786–796.

    Article  Google Scholar 

  • Scoville, W.B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.

    Article  PubMed  Google Scholar 

  • Squire, L., Emanuel, C.A., Davis, H.P., Deutsch, J.A. (1975). Inhibitors of cerebral protein synthesis: Dissociation of aversive and amnesic effects. Behavioral Biology, 14, 335–341.

    Article  PubMed  Google Scholar 

  • Squire, L.R. (1986). Mechanisms of memory. Science, 232, 1612–1619.

    Article  PubMed  Google Scholar 

  • Squire, L.R., & Cohen, N.J. (1984). Human memory and amnesia. In G. Lynch, J.L. McGaugh, & N.M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 3–64). New York: Guilford Press.

    Google Scholar 

  • Squire, L.R., & Spanis, C.W. (1984). Long gradient of retrograde amnesia in mice: Continuity with the findings in humans. Behavioral Neuroscience, 98, 345–348.

    Article  PubMed  Google Scholar 

  • Squire, L.R., & Zola-Morgan, S. (1983). The neurology of memory: The case for correspondence between the findings of man and non-human primate. In J. Anthony Deutsch (Ed.), Physiological basis of memory. New York: Academic Press, 199–268.

    Google Scholar 

  • Sternberg, D.B., Isaacs, K., Gold, P.E., & McGaugh, J.L. (1985). Epinephrine facilitation of appetitive learning: Attenuation with adrenergic receptor antagonists. Behavioral and Neural Biology, 44, 447–453.

    Article  PubMed  Google Scholar 

  • Sternberg, D.B., Korol, D., Novack, G., McGaugh, J.L. (1986). Epinephrine-induced memory facilitation: Attenuation by adrenergic receptor antagonists. European Journal of Pharmacology, 129, 184–193.

    Article  Google Scholar 

  • Strahlendorf, H.K., Strahlendorf, J.C., & Barnes, C.D. (1980). Endorphin-mediated inhibition of locus coeruleus neurons. Brain Research, 191, 284–288.

    Article  PubMed  Google Scholar 

  • Tanaka, M., Kohno, Y., Nakagawa, R., Ida, Y., Ilimori, K., Hoaki, Y., Tsuda, A., & Nagasaki, N. (1982a). Naloxone enhances stress-induced increases in noradrenaline turnover in specific brain regions in rats. Life Sciences, 30, 1663–1669.

    Article  PubMed  Google Scholar 

  • Tanaka, M., Kohno, Y., Nakagawa, R., Ida, Y., Takeda, S., & Nagasaki, N. (1982b). Time-related differences in noradrenaline turnover in rat brain regions by stress. Pharmacology, Biochemistry and Behavior, 16, 315–319.

    Article  Google Scholar 

  • Thompson, R.F. (1986). The neurobiology of learning and memory. Science, 233, 941–947.

    Article  PubMed  Google Scholar 

  • Tolman, E.C. (1932). Purposive behavior in animals and men. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Tolman, E.C., & Brunswik, E. (1935). The organism and the causal texture of the environment. Psychological Review, 42, 43–77.

    Article  Google Scholar 

  • U’Prichard, D.C., Reisine, T.D., Masion, S.F., Fibiger, H.C., & Yamamura, H.I. (1980). Modulation of rat alpha- and beta-adrenergic receptor populations by lesions in the dorsal noradrenergic bundle. Brain Research, 187, 143–154.

    Article  PubMed  Google Scholar 

  • Walker, J.M., Khachaturian, H., & Watson, S.J. (1984). Some anatomical and physiological interactions among noradrenergic systems and opioid peptides. In M.G. Ziegler & C.R. Lake (Eds.), Norepinephrine (pp. 74–91). Balitmore: Williams and Wilkins.

    Google Scholar 

  • Watson, J.B. (1919). Psychology from the standpoint of a behaviorist. Philadelphia: J.B. Lippincott.

    Book  Google Scholar 

  • Weil-Malherbe, H., Axelrod, J., & Tomchick, R. (1959). Blood-brain barrier for adrenalin. Science, 129, 1226–1228.

    Article  PubMed  Google Scholar 

  • Weinberger, N.M., Diamond, D.M., & McKenna, T.M. (1984). Initial events in conditioning: Plasticity in the pupillomotor and auditory systems. In G. Lynch, J.L. McGaugh, & N.M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 197–230). New York: Guilford Press.

    Google Scholar 

  • Weinberger, N.M., Gold, P.E., Sternberg, D.B. (1984). Epinephrine enables Pavlovian fear conditioning under anesthesia. Science, 223, 605–607.

    Article  PubMed  Google Scholar 

  • Young, W.S., Bird, S.J., & Kuhar, M.J. (1977). Iontophoresis of methionine-enkephalin in the locus coeruleus area. Brain Research, 129, 366–370.

    Article  PubMed  Google Scholar 

  • Zola-Morgan, S., & Squire, L.R. (1985). Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia. Behavioral Neuro science, 99, 22–34.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

McGaugh, J.L. (1989). Modulation of Memory Storage Processes. In: Solomon, P.R., Goethals, G.R., Kelley, C.M., Stephens, B.R. (eds) Memory: Interdisciplinary Approaches. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3500-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3500-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8128-3

  • Online ISBN: 978-1-4612-3500-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics