Skip to main content

The Use of Stable Sulfur Isotope Ratios in Air Pollution Studies: An Ecosystem Approach in South Florida

  • Conference paper
Stable Isotopes in Ecological Research

Part of the book series: Ecological Studies ((ECOLSTUD,volume 68))

Abstract

A great diversity of techniques have been used to identify the anthropogenic and natural sources of atmospheric elemental emissions. Atmospheric gases and particulate matter, precipitation, surface waters, vegetation, and soils have all been analyzed in order to quantify elemental emissions, identify relative source contributions, and assess the region of influence of point and non-point emission sources. Typical techniques used in air pollution studies include source- based models, which utilize emission inventories and dispersion predictions, and receptor-based models, which use enrichment factors, chemical element balances, factor analysis, element concentration-distance trends, and stable isotope ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DF and Farwell SO (1981) Biogenic sulfur source strengths. Environ. Sci. Tech nol. 15:1493–1498.

    Article  CAS  Google Scholar 

  • Altschuler ZS, Schnepfe MM, Silber CC, and Simon FO (1983) Sulfur diagenesis in Everglades peat and origin of pyrite in coal. Science 221:221–227.

    Article  PubMed  CAS  Google Scholar 

  • Altschuler ZS, Vanlier KE, Armbruster JT, and Zen CS (1973) Physical setting, pp. 2– 7. In Resource and Land Information for South Dade County, Florida, Geological Survey Investigation I-850. U.S. Dept. of the Interior, Washington, D.C.

    Google Scholar 

  • Brezonik PL, Edgerton ES, and Hendry CD (1980) Acid precipitation and sulfate deposition in Florida. Science 208:1027–1029.

    Article  PubMed  CAS  Google Scholar 

  • Brooks HH (1981) Guide to the Physiographic Divisions of Florida. Florida Cooperative Extension Service, Gainesville, Florida.

    Google Scholar 

  • Carlson PR Jr and Forrest J (1982) Uptake of dissolved sulfide by Spartina alterniflora:evidence from natural sulfur isotope abundance ratios. Science 216:633–635.

    Article  PubMed  CAS  Google Scholar 

  • Case JW and Krouse HR (1980) Variations in sulphur content and stable sulphur isotope composition of vegetation near a SO2 source at Fox Creek, Alberta, Canada. Oecologia 44:248–257.

    Article  Google Scholar 

  • Chen L and Duce RA (1983) The sources of sulfate, vanadium, and mineral matter in aerosol particles over Bermuda. Atmos. Environ. 17:2055–2064.

    CAS  Google Scholar 

  • Chukhrov FV, Yermilova LP, Churikov VS, and Nosik LP (1978a) Sulfur isotope phytogeochemistry. Geochem. Int. 15 (4):25–40.

    Google Scholar 

  • Chukhrov FV, Yermilova LP, and Nosik LP (1978b) New data on the isotopic distribution in sulfur of ocean areas. Dokl. Akad. Nauk SSSR 242:182–184.

    Google Scholar 

  • Chukhrov FV, Ermilova LP, Churikov VS, and Nosik LP (1980) The isotopic composition of plant sulfur. Organ. Geochem. 2:69–75.

    Article  CAS  Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, and Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28:199–260.

    Article  CAS  Google Scholar 

  • Cortecci G and Longinelli A (1970) Isotopic composition of sulfate in rain water, Pisa, Italy. Earth Planet. Sci. Lett. 8:36–40.

    Article  CAS  Google Scholar 

  • Edgerton ES, Brezonik PL, and Hendry, CD (1981) Atmospheric deposition of acidity and sulfur in Florida, pp. 237–258. In Eisenreich SJ (editor), Atmospheric Pollutants in Natural Waters. Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Faure G (1977) Principles of Isotope Geology. John Wiley and Sons, New York, pp. 403–423.

    Google Scholar 

  • Forrest J and Newman L (1977) Further studies on the oxidation of sulfur dioxide in coal-fired power plant plumes. Atmos. Environ. 11:465–474.

    CAS  Google Scholar 

  • Friedlander SK (1973) Chemical element balances and identification of air pollution sources. Environ. Sci. Technol. 7:235–240.

    Article  CAS  Google Scholar 

  • Fry B, Scalan RS, Winters JK, and Parker PL (1982) Sulphur uptake by salt grasses, mangroves, and seagrasses in anaerobic sediments. Geochim. Cosmochim. Acta 46:1121–1124.

    CAS  Google Scholar 

  • Gambell AW and Fisher DW (1966) Chemical composition of rainfall in eastern North Carolina and southeastern Virginia—geochemistry of water. U.S. Geological Survey Water-Supply Paper 1535-K, 41 pp.

    Google Scholar 

  • Gough LP, Jackson LL, Bennett JP, Severson RC, Engleman EE, Briggs P, and Wilcox JR (1986) The regional influence of an oil-fired power plant on the concentration of elements in native materials in and near south Florida national parks. U.S. Geological Survey Open-File Report 86-395, 63 pp.

    Google Scholar 

  • Grey DC and Jensen ML (1972) Bacteriogenic sulfur in air pollution. Science 177:1099– 1100.

    Google Scholar 

  • Harvey GR and Lang RF (1986) Dimethylsulfoxide and dimethylsulfone in the marine atmosphere. Geophys. Res. Lett. 13:49–51.

    CAS  Google Scholar 

  • Hitchcock DR and Black MS (1984) 34S/32S evidence of biogenic sulfur oxides in a salt marsh atmosphere, Atmos. Environ. 18:1–17.

    Google Scholar 

  • Hoefs J (1980) Stable Isotope Geochemistry. Springer-Verlag, New York.

    Google Scholar 

  • Hoffmeister JE, Stockman KW, and Multer HG (1967) Miami limestone of Florida and its recent Bahamian counterpart. Geol. Soc. Am. Bull. 78:175–190.

    Article  Google Scholar 

  • Holt BD, Engelkemeir AG, and Venters A (1972) Variations of sulfur isotope ratios in samples of water and air near Chicago. Environ. Sci. Technol. 6:338–341.

    Article  CAS  Google Scholar 

  • Jensen ML and Nakai N (1961) Sources and isotopic composition of atmospheric sulfur. Science 134:2102–2104.

    Article  PubMed  CAS  Google Scholar 

  • Johnson DW (1984) Sulfur cycling in forests. Biogeochemistry 1:29–43.

    Article  CAS  Google Scholar 

  • Junge CE (1972) Our knowledge of the physico-chemistry of aerosols in the undisturbed marine environment. J. Geophys. Res. 77:5183–5200.

    Article  CAS  Google Scholar 

  • Kaplan IR, Emery KO, and Rittenberg SC (1963) The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochim. Cosmochim. Acta 27:297–331.

    CAS  Google Scholar 

  • Kowalczyk GS, Gordon GE, and Rheingrover SW (1982) Identification of atmospheric particulate sources in Washington, D.C., using chemical element balances. Environ. Sci. Technol. 16:79–90.

    Article  CAS  Google Scholar 

  • Krouse HR (1977) Sulphur isotope abundance elucidate uptake of atmospheric sulphur emissions by vegetation. Nature 265:45–46.

    Article  CAS  Google Scholar 

  • Krouse HR, Legge AH, and Brown HM (1984) Sulphur gas emissions in the boreal forest:the West Whitecourt case study—V. stable sulphur isotopes. Water Air Soil Pollut. 22:321–347.

    Article  CAS  Google Scholar 

  • Krouse HR, McCready RGL (1979) Reductive reactions in the sulfur cycle, pp. 315– 368. In Trudinger PA and Swaine DJ (editors), Biogeochemical Cycling of Mineral Forming Elements. Elsevier, New York.

    Google Scholar 

  • Kusakabe M, Rafter TA, Stout JD, and Collie TW (1976) Sulphur isotopic variations in nature—12. Isotopic ratios of sulphur extracted from some plants, soils and related materials. N.Z. J. Sci. 19:433–440.

    CAS  Google Scholar 

  • Lee RE and Daffield FV (1979) Sources of environmentally important metals in the atmosphere, pp. 146–171. In Risby TH (editor), Ultratrace Metal Analysis in Biological Sciences and Environment. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Ludwig FL (1976) Sulfur isotope ratios and the origins of the aerosols and cloud droplets in California stratus. Tellus 28:427–433.

    Article  CAS  Google Scholar 

  • Luecke W and Nielsen N (1973) Isotopenfraktionierung des Schwefels in Blasensprüh. Fortschr. Mineral 50 (Beih 3):36–38.

    Google Scholar 

  • McPherson BF, Hendrix GY, Klein H, and Tyus HM (1976) The environment of south Florida, a summary report. U.S. Geological Survey Professional Paper 1011, 81 pp.

    Google Scholar 

  • Mekhtiyeva VL, Gavrilov EYa, and Pankina RG (1976b) Sulfur isotopic composition in land plants. Geochem. Int. 13 (6):85–88.

    Google Scholar 

  • Mekhtiyeva VL and Pankina RG (1968) Isotopic composition of sulfur in aquatic plants and dissolved sulfates. Geochem. Int. 5:624–627.

    Google Scholar 

  • Mekhtiyeva VL, Pankina RG, and Gavrilov YeYa (1976a) Distributions and isotopic compositions of forms of sulfur in water animals and plants. Geochem. Int. 13(5):82– 87.

    Google Scholar 

  • Newman L, Forrest J, and Manowitz B (1975a) The application of an isotopic ratio technique to a study of the atmospheric oxidation of sulfur dioxide in the plume from an oil-fired power plant. Atmos. Environ. 9:959–968.

    CAS  Google Scholar 

  • Newman L, Forrest J, and Manowitz B (1975b) The application of an isotopic ratio technique to a study of the atmospheric oxidation of sulfur dioxide in the plume from a coal fired power plant. Atmos. Environ. 9:969–977.

    CAS  Google Scholar 

  • Nielsen H (1974) Isotopic composition of the major contributors to atmospheric sulfur. Tellus 26:213–220.

    Article  CAS  Google Scholar 

  • Nriagu JO and Coker RD (1978a) Isotopic composition of sulfur in precipitation within the Greak Lakes Basin. Tellus 30:365–375.

    Article  CAS  Google Scholar 

  • Nriagu JO and Coker RD (1978b) Isotopic composition of sulfur in atmospheric precipitation around Sudbury, Ontario. Nature 274:883–885.

    Article  CAS  Google Scholar 

  • Ostlund G (1959) Isotopic composition of sulfur in precipitation and sea-water. Tellus 11:478–480.

    Article  CAS  Google Scholar 

  • Peterson BJ, Howarth RW, and Garritt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227:1361–1363.

    Article  PubMed  CAS  Google Scholar 

  • Pearson FJ Jr and Rightmire CT (1980) Sulphur and oxygen isotopes in aqueous sulfur compounds, pp. 227–258. In Fritz P and Fontes JC (editor), Handbook of Environmental Isotope Geochemistry. Elsevier, New York.

    Google Scholar 

  • Puri HS and Vernon RO (1964) Summary of the geology of Florida and a guide book to the classic exposures. Florida State Geological Survey Special Publication No. 5, Tallahassee.

    Google Scholar 

  • Rasmussen RA (1974) Emission of biogenic hydrogen sulfide. Tellus 26:254–260.

    Article  CAS  Google Scholar 

  • Rye RO, Back W. Hanshaw BB, Rightmire CT, and Pearson FJ Jr (1981) The origin and isotopic composition of dissolved sulfide in groundwater from carbonate aquifers in Florida and Texas. Geochim. Cosmochim. Acta 45:1941–1950.

    CAS  Google Scholar 

  • Savoie DL and Prospero JM (1980) Water-soluble potassium, calcium, and magnesium in the aerosols over the tropical north Atlantic. J. Geophys. Res. 85:385–392.

    Article  CAS  Google Scholar 

  • Smith WH (1984) Pollutant uptake by plants, pp. 417–450. In Treshow M (ed) Air Pollution and Plant Life. John Wiley and Sons, New York.

    Google Scholar 

  • Thode HG and Monster J (1965) Sulfur-isotope geochemistry of petroleum, evaporites, and ancient seas. pp. 367–377. In American Association of Petroleum Geologists, Memoir 4, Fluids in Subsurface Environments.

    Google Scholar 

  • Thode HG and Rees CE (1970) Sulphur isotope geochemistry and Middle East oil studies. Endeavour 29:24–28.

    CAS  Google Scholar 

  • Tomlinson PB and Craighead FC Sr (1972) Growth-ring studies on the native trees of sub-tropical Florida, pp. 39–51. In Ghouse AKM and Yunus Mohd (editor), Research Trends in Plant Anatomy—K.A. Chowdhury Commemoration Volume. Tata McGraw Hill Publishing, New Dehli.

    Google Scholar 

  • U.S. Department of Commerce (1968) Climatic data for Florida. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Winner WE, Bewley JD, Krouse HR, and Brown HM (1978) Stable sulfur isotope analysis of SO2 pollution impact on vegetation. Oecologia 36:351–361.

    Article  Google Scholar 

  • Winner WE, Smith CL, Koch GW, Mooney HA, Bewley JD, and Krouse HR (1981) Rates of emission of H2S from plants and patterns of stable isotope fractionation. Nature 289:672–673.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Jackson, L.L., Gough, L.P. (1989). The Use of Stable Sulfur Isotope Ratios in Air Pollution Studies: An Ecosystem Approach in South Florida. In: Rundel, P.W., Ehleringer, J.R., Nagy, K.A. (eds) Stable Isotopes in Ecological Research. Ecological Studies, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3498-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3498-2_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8127-6

  • Online ISBN: 978-1-4612-3498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics