Skip to main content

The Use of Variation in the Natural Abundance of 15N to Assess Symbiotic Nitrogen Fixation by Woody Plants

  • Conference paper

Part of the book series: Ecological Studies ((ECOLSTUD,volume 68))

Abstract

Deeply rooted woody plants capable of symbiotic N2 fixation are often dominant components of plant communities. The importance of symbiotic N2 fixation to the N economy of these plants and to overall ecosystem productivity is poorly understood. This is a consequence of technical difficulties in detecting and/or measuring N2 fixation under field conditions using conventional approaches (i.e., acetylene reduction assay). The utility of the natural 15N abundance approach to assess symbiotic N2 fixation is discussed by Shearer and Kohl in Chapter 20 of this volume. This approach is analogous to isotopic dilution methods widely used in agricultural studies except that it takes advantage of small deviations in the natural 15N abundance of soil from that of the atmosphere and, therefore, does not require isotope application to the soil.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey AW (1976) Nitrogen fixation in honey mesquite seedlings. J. Range Manage. 29:479.

    Article  CAS  Google Scholar 

  • Bremner JM and Tabatabai MA (1973) 15N enrichment of soils and soil derived nitrate. J. Environ. Qual. 2:363–365.

    Google Scholar 

  • Cheng HH, Bremner JM, and Edwards AP (1965) Variations of nitrogen-15 abundance in soils. Science 146:1574–1575.

    Article  Google Scholar 

  • Delwiche CC and Steyn PL (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci. Technol. 4:929–935.

    Article  CAS  Google Scholar 

  • Delwiche CC, Zinke PJ, Johnson CM, and Virginia RA (1979) Nitrogen isotope distribution as a presumptive indicator of nitrogen fixation. Bot. Gaz. 140:65–69.

    Article  CAS  Google Scholar 

  • Ellis BA, Verfaillie JR, and Kummerow J (1983) Nutrient gain from wet and dry atmospheric deposition and rainfall acidity in southern California chaparral. Oecologia (Berlin) 60:118–121.

    Article  Google Scholar 

  • Eskew DL and Ting IP (1978) Nitrogen fixation by legumes and blue-green algal-lichen crusts in a Colorado desert environment. Am. J. Bot. 65:850–856.

    Article  CAS  Google Scholar 

  • Felker P and Clark PR (1980) Nitrogen fixation (acetylene reduction) and cross inoculation in twelve Prosopis (Mesquite) species. Plant Soil 57:177–186.

    Article  CAS  Google Scholar 

  • Hogberg P (1986) Nitrogen-fixation and nutrient relations in savanna woodland trees (Tanzania). J. Appl. Ecol. 23:675–688.

    Article  Google Scholar 

  • Jarrell WM, Virginia RA, Kohl DH, Shearer G, Bryan BA, Rundel PW, Nilsen ET, and Sharifi MR (1982) Symbiotic nitrogen fixation by mesquite and its management implications, pp. R1–R12. In Parker HW (editor), Mesquite Utilization–1982. Proc. Mesquite Utilization Symposium, College of Agricultural Science, Texas Tech University, Lubbock.

    Google Scholar 

  • Jenkins MB, Jarrell WM, and Virginia RA (1988) Rhizobial ecology of Psorothamnus spinosus in a Sonoran Desert arroyo. Plant Soil 105:113–120.

    Article  Google Scholar 

  • Jenkins MB, Virginia RA, and Jarrell WM (1987) Rhizobial ecology of the woody legume mesquite (Prosopis glandulosa) in the Sonoran Desert. Appl. Environ. Microbiol. 53:36–40.

    CAS  Google Scholar 

  • Kummerow J (1981) Structure of roots and root systems, pp. 269–288. In di Castri F, Goodall DW, and Specht RL (editors), Mediterranean-Type Shrublands. Elsevier, Amsterdam.

    Google Scholar 

  • Kummerow J, Alexander JV, Neel JW, and Fishbeck K (1978) Symbiotic nitrogen fixation in Ceanothus roots. Am. J. Bot. 65:63–69.

    Article  CAS  Google Scholar 

  • Miller PC (1981) Resource Use by Chaparral and Matorral. Springer-Verlag, New York.

    Google Scholar 

  • Nilsen ET, Rundel PW, and Sharifi MR (1984) Productivity in native stands of Prosopis glandulosa in the Sonoran Desert of southern California and some mangement implications. pp. 722–727. In Warner RE and Hendrix KM (editors), California Riparian Systems. University of California Press, Berkeley.

    Google Scholar 

  • Nilsen ET, Rundel PW, Sharifi MR, Jarrell WM, and Virginia RA (1983) Diurnal and seasonal water relations of the desert phreatophyte Prosopis glandulosa (honey mesquite) in the Sonoran Desert of California. Ecology 64:1381–1393.

    Article  Google Scholar 

  • Nilsen ET, Virginia RA, and Jarrell WM (1986) Water relations and growth characteristics of Prosopis glandulosa var. torreyana in a simulated phreatophytic environment. Am. J. Bot. 73:427–433.

    Article  Google Scholar 

  • Pate JS, Atkins CA, and Rainbird RM (1981) Theoretical and experimental costing of nitrogen fixation and related processes in nodules of legumes, pp. 105–116. In Gibson AH and Newton WE (editors), Current Perspectives in Nitrogen Fixation. Australian Academy of Science, Canberra.

    Google Scholar 

  • Rundel PW (1988) Ecological success in relation to plant form and function in woody legumes. In Stirton CH and Zarucchi JL (editors), Advances in Legume Biology. Monograph of Systematic Botany, Missouri Botanical Garden, St. Louis, Missouri, In press.

    Google Scholar 

  • Rundel PW, Nilsen ET, Sharifi MR, Virginia RA, Jarrell WM, Kohl DH, and Shearer GB (1982) Seasonal dynamics of nitrogen cycling for a Prosopis woodland in the Sonoran Desert. Plant Soil 67:343–353.

    Article  CAS  Google Scholar 

  • Rundel PW and Parsons DJ (1980) Nutrient changes in two chaparral shrubs along a fire-induced age gradient. Am. J. Bot. 67:51–58.

    Article  Google Scholar 

  • Sharifi MR, Nilsen ET, and Rundel PW (1982) Biomass and net primary production of Prosopis glandulosa (Fabaceae) in the Sonoran Desert of California. Am. J. Bot. 69:760–768.

    Article  Google Scholar 

  • Shearer G, Bryan BA, and Kohl DH (1984) Increase of natural 15N enrichment of soybean nodules with mean module mass. Plant Physiol. 76:734–746.

    Article  Google Scholar 

  • Shearer G, Feldman L, Bryan BA, Skeeters J, Kohl DH, Amarger N, Mariotti F, and Mariotti A (1982) 15N abundance of nodules as an indicator of N metabolism in N2-fixing plants. Plant Physiol. 70:465–468.

    Google Scholar 

  • Shearer G and Kohl DH (1978) 15N abundance in N-fixing and non-N-fixing plants, pp. 605–622. In Frigerio A (editor), Recent Developments in Mass Spectrometry in Biochemistry and Medicine. Plenum Press, New York.

    Google Scholar 

  • Shearer GB, Kohl DH, and Chien SH (1978) The nitrogen-15 abundance in a wide variety of soils. Soil Sci. Soc. Am. J. 42:899–902.

    CAS  Google Scholar 

  • Shearer G, Kohl DH, and Harper JE (1980) Distribution of 15N among plant parts of nodulating and non-nodulating isolines of soybeans. Plant Physiol. 66:57–60.

    Article  PubMed  CAS  Google Scholar 

  • Shearer G, Kohl DH, Virginia RA, Bryan BA, Skeeters JL, Nilsen ET, Sharifi MR, and Rundel PW (1983) Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran Desert ecosystem. Oecologia (Berlin) 56:365–373.

    Article  Google Scholar 

  • Skujins J (1981) Nitrogen cycling in arid ecosystems. In Clark FE and Ross wall T (editors), Terrestrial Nitrogen Cycles. Ecol. Bull. (Stockholm) 33:477–491.

    Google Scholar 

  • Turner GL and Bergersen FJ (1983) Natural abundance of 15N in root nodules of soybean, lupin, subterranean clover and lucerne. Soil Biol. Biochem. 15:525–530.

    Google Scholar 

  • Turner GL, Bergersen FJ, and Tantala H (1983) Natural enrichment of 15N during decomposition of plant material in soil. Soil Biol. Biochem. 15:495–497.

    CAS  Google Scholar 

  • Virginia RA (1986) Soil development under legume tree canopies. Forest Ecol. Manage. 16:69–79.

    CAS  Google Scholar 

  • Virginia RA, Baird LM, La Favre JS, Jarrell WM, Bryan BA, and Shearer G (1984) Nitrogen fixation efficiency, morphology, and natural 15N abundnace of mesquite (Prosopis glandulosa) root nodules. Plant Soil 79:273–284.

    Article  CAS  Google Scholar 

  • Virginia RA and Delwiche CC (1982) Natural 15N abundnace of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia (Berlin) 54:317–325.

    Article  Google Scholar 

  • Virginia RA and Jarrell WM (1983) Soil properties in a mesquite-dominated Sonoran Desert ecosystem. Soil Sci. Soc. Am. J. 47:138–144.

    CAS  Google Scholar 

  • Virginia RA, Jarrell WM, and Franco-Vizcaiano E (1982) Direct measurement of denitrification in a Prosopis- dominated desert ecosystem. Oecologia (Berlin) 5:120– 122.

    Google Scholar 

  • Virginia RA, Jenkins MB, and Jarrell WM (1986) Depth of root symbiont occurrence in soil. Biol. Fert. Soils 2:127–130.

    Google Scholar 

  • Williams SE, Poth M, and Dunn PH (1986) Ceanothus crassifolius Torr. nodulation and nitrogen fixation across a burn chronosequence. Agronomy Abstracts, p. 191.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Virginia, R.A., Jarrell, W.M., Rundel, P.W., Shearer, G., Kohl, D.H. (1989). The Use of Variation in the Natural Abundance of 15N to Assess Symbiotic Nitrogen Fixation by Woody Plants. In: Rundel, P.W., Ehleringer, J.R., Nagy, K.A. (eds) Stable Isotopes in Ecological Research. Ecological Studies, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3498-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3498-2_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8127-6

  • Online ISBN: 978-1-4612-3498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics