Skip to main content

Estimates of N2 Fixation in Ecosystems: The Need for and Basis of the 15N Natural Abundance Method

  • Conference paper
Stable Isotopes in Ecological Research

Part of the book series: Ecological Studies ((ECOLSTUD,volume 68))

Abstract

Absolute instantaneous rates of biological N2 fixation can be measured accurately under carefully controlled laboratory conditions. Seeking an integrated value of the quantity of N2 fixed over, for example, a growing season adds enormously to the problem. These difficulties are considerably magnified in natural field settings, compared to agricultural settings. Several articles have reviewed available methods for use in the field (Burris 1974; Hardy and Holsten 1977; Bergersen 1980; Turner and Gibson 1980; Knowles 1980, 1981; Rennie and Rennie 1983; Silvester 1983) with the authors expressing various degrees of satisfaction with the available methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amarger N, Mariotti A, and Mariotti F (1977) Essai d’estimation du taux d’azote fixé symbiotiquement chez le lupin par le traçage isotopique naturel (15N). C.R. Acad. Sci. Paris 284:2179–2182.

    CAS  Google Scholar 

  • Amarger N, Mariotti, A, Mariotti F, Durr JC, Bourguignon C, and Lagacherie B (1979) Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15N natural abundance. Plant Soil 52:269–280.

    Article  CAS  Google Scholar 

  • Beers Y (1957) Introduction to the Theory of Error. Addison Wesley, Reading, Massachusetts.

    Google Scholar 

  • Bergersen FJ (1970) The quantitative relationships between nitrogen fixation and the acetylene reduction assay. Aust. J. Biol. Sci. 23:1015–1025.

    CAS  Google Scholar 

  • Bergersen FJ (1980) Measurement of nitrogen fixation by direct means, pp. 65–110. In Bergersen FJ (editor), Methods of Evaluating Biological Nitrogen Fixation. John Wiley and Sons, New York.

    Google Scholar 

  • Bergersen FJ, Turner GL (1983) An evaluation of 15N methods for estimating nitrogen fixation in a subterranean clover—perennial ryegrass sward. Aust. J. Agric. Res. 34:391–401.

    Article  Google Scholar 

  • Bergersen FJ, Turner GL, Amarger N, Mariotti F, and Marotti A (1985a) Strain of Rhizobium lupinis determines the natural abundance of 15N in root nodules of Lupinus spp. Soil Biol. Biochem. 18:97–101.

    Google Scholar 

  • Bergersen FJ, Turner GL, Gault RR, Chase DL, and Brockwell J (1985b) The natural abundance of 15N in an irrigated soybean crop and its use for the calculation of nitrogen fixation. Aust. J. Agric. Res. 36:411–423.

    Article  CAS  Google Scholar 

  • Biegeleisen J (1965) Chemistry of isotopes. Science 147:463–471.

    Article  Google Scholar 

  • Bremner JM (1977) Use of nitrogen-tracer techniques for research on nitrogen fixation, pp. 335–352. In Ayanaba A and Dart PJ (editors), Biological Nitrogen Fixation in Farming Systems of the Tropics. John Wiley and Sons, New York.

    Google Scholar 

  • Bremner JM and Tabatabai MA (1973) 15N enrichment of soils and soil derived nitrate. J. Environ. Qual. 2:363–365.

    Google Scholar 

  • Broadbent FE, Rauschkolb RS, Lewis KA, and Chang GY (1980) Spatial variability of nitrogen-15 and total nitrogen in some virgin and cultivated soils. Soil Sci. Soc. Am. J. 44:524–527.

    CAS  Google Scholar 

  • Bryan BA, Shearer G, Skeeters JL, and Kohl DH (1985) Denitrification by intact soybean nodules in relation to natural 15N enrichment of nodules. Can. J. Soil. Sci. 65:261– 267.

    Google Scholar 

  • Burns RH (1974) Methodology, pp. 9–33. In Quispsel A. (editor), The Biology of Nitrogen Fixation. Elsevier, New York.

    Google Scholar 

  • Chalk PM (1985) Estimation of N2 fixation by isotope dilution:an appraisal of techniques involving 15N enrichment and their application. Soil Biol. Biochem. 17:389–410.

    CAS  Google Scholar 

  • Cheng HH, Bremner JM, and Edwards AP (1965) Variations of nitrogen-15 abundance in soils. Science 146:1574–1575.

    Article  Google Scholar 

  • Delwiche CC and Steyn PL (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci. Technol. 4:929–935.

    Article  CAS  Google Scholar 

  • Delwiche CC, Zinke PJ, Johnson CM, and Virginia RA (1979) Nitrogen isotope distribution as a presumptive indication of nitrogen fixation. Bot. Gaz. 140:65–69.

    Article  CAS  Google Scholar 

  • Domenach AM and Chalamet A (1979) Estimates d’azote par le soja à l’aide de deux méthodes d’analyses isotopiques. C.R. Acad. Sci. Paris Ser. D 289:291–294.

    CAS  Google Scholar 

  • Domenach AM and Corman A (1984) Dinitrogen fixation by field grown soybeans; statistical analysis of variations in δ15N and proposed sampling procedures. Plant Soil 78:301–313.

    Article  CAS  Google Scholar 

  • Estep MLF and Macko SA (1984) Nitrogen isotope biogeochemistry of thermal springs. Org. Geochem. 6:779–785.

    Article  CAS  Google Scholar 

  • Fried M and Broeshart H (1975) An independent measurement of the amount of nitrogen fixed by a legume crop. Plant Soil 43:707–711.

    Article  Google Scholar 

  • Fried M and Middleboe V (1977) Measurement of the amount of nitrogen fixed by a legume crop. Plant Soil 47:713–715.

    Article  CAS  Google Scholar 

  • Hardy RWF and Holsten RD (1977) Methods for measurement of dinitrogen fixation, pp. 451–486. In Hardy RWF and Gibson AH (editors), A Treatise on Dinitrogen Fixation, Vol IV. John Wiley and Sons, New York.

    Google Scholar 

  • Hauck RD and Bremner JM (1976) Use of tracers for soil and fertilizer nitrogen research. Adv Agron 28:219–266.

    Article  Google Scholar 

  • Heisey RM, Delwich CC, Virginia RA, and Bryan BA (1980) A new nitrogen fixing non legume. Chamaebatia foliolosa Benth (Rosaceae). Am. J. Bot. 67:429–431.

    Article  Google Scholar 

  • Hoering T and Ford HT (1960) The isotope effect in the fixation of nitrogen by Azotobacter. J. Am. Chem. Soc. 82:376–378.

    Article  CAS  Google Scholar 

  • Junk G and Svec HV (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim. Cosmochim. Acta 14:234–243.

    CAS  Google Scholar 

  • Karamanos RE, Voroney RP, and Rennie DA (1981) Variation in natural 15N abundance of central Saskatchewan soils. Soil Sci. Soc. Am. J. 45:826–828.

    CAS  Google Scholar 

  • Knowles R (1980) Nitrogen fixation in natural plant communites and soils, pp. 557–582. In Bergersen FJ (editor), Methods for Evaluating Biological Nitrogen Fixation. John Wiley and Sons, New York.

    Google Scholar 

  • Knowles R (1981) The measurement of nitrogen fixation, pp. 327–33. In Gibson AH and Newton WE (editors), Current Perspectives in Nitrogen Fixation. Elsevier, New York.

    Google Scholar 

  • Kohl DH and Shearer G (1980) Isotopic fractionation associated with symbiotic N2 fixation and uptake of NO3- by plants. Plant Physiol. 66:51–56.

    Article  PubMed  CAS  Google Scholar 

  • Kohl DH, Bryan BA, Shearer G, and Virginia R (1981) Concerning the heterogeneity of the natural abundance of 15N in soil N. Soil Sci. Soc. Am. J. 45:450–451.

    Article  CAS  Google Scholar 

  • Kohl DH, Bryan BA, Feldman L, Brown PH, and Shearer G (1982) Isotopic fractionation in soybean nodules, pp. 9–33. In Schmidt HL, Förstel H, and Heizinger K (editors), Proc. 4th Int. Conf. Stable Isotopes. Elsevier, Amsterdam.

    Google Scholar 

  • Kohl DH, Bryan BA, and Shearer G (1983) Relationship between N2-fixing efficiency and natural 15N enrichment of soybean nodules. Plant Physiol. 73:514–516.

    Article  PubMed  CAS  Google Scholar 

  • Kohl DH, Shearer G, and Harper JE (1979) The natural abundance of 15N in nodulating and non-nodulating isolines of soybeans, pp. 317–325. In Proc 3rd Int. Conf. Stable Isotopes. Academic Press, New York.

    Google Scholar 

  • Kohl DH, Shearer G, and Harper JE (1980) Estimates of N2-fixation based on differences in the natural abundance of 15N in nodulating and non-nondulating isolines of soybeans. Plant Physiol. 66:61–65.

    Article  PubMed  CAS  Google Scholar 

  • Ledgard SF (1984) Evaluation of two 15N methods for measuring nitrogen fixation by legumes in established pastures. Ph.D. thesis, Australian National University, Canberra.

    Google Scholar 

  • Ledgard SF, Freney JR, and Simpson JR (1984) Variations in natural enrichment of 15N in the profiles of some Australian pasture soils. Aust. J. Soil. Res. 22:155–164.

    Article  CAS  Google Scholar 

  • Ledgard SF, Mortan R, Freney JR, and Bergersen PJ (1985a) Assessment of the relative uptake of added and indigenous soil nitrogen by nodulated legumes and reference plants in the 15N dilution measurement of N2 fixation:derivation of the method. Soil Biol. Biochem. 17:317–321.

    CAS  Google Scholar 

  • Ledgard SF, Simpson JR, Freney JR, Bergersen FJ, and Morton R (1985b) Assessment of the relative uptake of added and indigenous soil nitrogen by nodulated legumes and reference plants in the 15N dilution measurement of N2-fixation:glasshouse application of the method. Soil Biol. Biochem. 17:323–328.

    CAS  Google Scholar 

  • Ledgard SF, Simpson JR, Freney JR, and Bergersen FJ (1985c) Field evaluation of 15N techniques for estimating nitrogen fixation in legume-grass associations. Aust. J. Agric. Res. 36:247–258.

    Article  Google Scholar 

  • Ledgard SF, Simpson JR, Freney JR, and Bergersen FJ (1985d) Effect of reference plant

    Google Scholar 

  • on estimation of nitrogen fixation by subterranean clover using 15N methods. Aust. J. Agric. Res. 36:663–676.

    Google Scholar 

  • Mague TH and Burris RH (1972) Reduction of acetylene and nitrogen by field grown soybeans. New Phytol. 71:275–286.

    Article  CAS  Google Scholar 

  • Mariotti A (1982) Apports de la géochimie isotopique à la connaissance du cycle de l’azote. Mémoires des Sciences de la Terre no. 82–13. Université P. et M. Curie, Paris.

    Google Scholar 

  • Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685–687.

    Article  CAS  Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, and Tardieux P (1981) Experimental determinations of nitrogen kinetic isotope fractionation:some principles:illustration for the denitrification and nitrification processes. Plant Soil 62:413–430.

    Article  CAS  Google Scholar 

  • Mariotti A, Mariotti F, Amarger N, Pizelle G, Ngambi JM, Champigny ML, and Moyse A (1980a) Fractionnements isotopiques de l’azote lors des processus d’absorption des nitrates et de fixation de l’ azote atmosphérique par les plants. Physiol. Veg. 18:163–181.

    CAS  Google Scholar 

  • Mariotti A, Mariotti F, Champigny ML, Amarger N, and Moyse A (1982) Nitrogen isotope fractionation associated with nitrate reductase activity and uptake of NO3 - by pearl millet. Plant Physiol. 69:880–884.

    Article  PubMed  CAS  Google Scholar 

  • Mariotti A, Pierre D, Vedy JC, and Bruckert S (1980b) The abundance of natural 15N in the organic matter of soils along an attitudinal gradient (Chablais, Haute-Savoie). Catena 7:293–300.

    CAS  Google Scholar 

  • Melander L and Saunders WH Jr (1980) Reaction Rates of Isotopic Molecules. John Wiley and Sons, New York, p. 331 (see pp. 2, 22 ).

    Google Scholar 

  • Reinero A, Shearer G, Bryan BA, Skeeters JL, and Kohl DH (1983) Site of natural 15N enrichment of soybean nodules. Plant Physiol. 72:256–258.

    Article  PubMed  CAS  Google Scholar 

  • Rennie DA, Paul EA, and Johns LE (1976) Natural nitrogen-15 abundance of soil and plant samples. Can. J. Soil Sci. 56:43–50.

    CAS  Google Scholar 

  • Rennie RJ and Larson RI (1981) Dinitrogen fixation associated with disomic chromosome substitution lines of spring wheat in the phytotron and in the field, pp. 145–154. In Vose PB and Ruschel AP (editors), Associative Nitrogen Fixation Vol. 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Rennie RJ and Rennie DA (1983) Techniques for quantifying N2-fixation in association with non legumes under field conditions. Can. J. Microbiol. 29:1022–1035.

    Google Scholar 

  • Riga A, Van Praag HJ, and Brigode N (1970) Rapport isotopique naturel de l’azote dans quelques sols forestiers et agricoles de belgique soumis à divers traitements culturaux. Geoderma 6:213–222.

    Article  Google Scholar 

  • Rundel PW, Nilsen ET, Sharifi MR, Virginia RA, Jarrell WM, Kohl DH, and Shearer G (1982) Seasonal dynamics of nitrogen cycling for a Prosopis woodland in the Sonoran Desert. Plant Soil 67:343–353.

    Article  CAS  Google Scholar 

  • Ruschel AP (1984) Evaluation of biological nitrogen fixation:difficulties and means of overcoming them. pp. 125–138. In Malik, KA, Mujfaba Nakvi SH, and Aleem MIH (editors), Nitrogen in the Environment. Nuclear Institute for Agriculture and Ecology, Falisbad, Pakistan.

    Google Scholar 

  • Schoenheimer R and Rittenberg D (1939) Studies in protein metabolism:I. General considerations in the application of isotopes to the study of protein metabolism. The normal abundance of nitrogen isotopes in amino acids. J. Biol. Chem. 127:285–290.

    Google Scholar 

  • Sharifi RM, Nilsen ET, and Rundel PW (1982) Biomass and net primary production of Prosopis glandulosa (Fabaceae) in the Sonoran desert of California. Am. J. Bot. 69:760–767.

    Article  Google Scholar 

  • Shearer G, Bryan BA, and Kohl DH (1984) Increase of natural 15N enrichment of soybean nodules with mean nodule mass. Plant Physiol. 76:734–746.

    Article  Google Scholar 

  • Shearer G, Feldman L, Bryan BA, Skeeters J, Kohl DH, Amarger N, Mariotti F, and Mariotti A (1982) 15N abundance of nodules as an indicator of N metabolism in N2- fixing plants. Plant Physiol. 70:465–468.

    Google Scholar 

  • Shearer G and Kohl DH (1978) 15N abundance in N-fixing and non-N-fixing plants, pp. 605–622. In Frigerio A (editor), Mass Spectrometry in Biochemistry and Medicine, Vol. 1. Plenum Press, New York.

    Google Scholar 

  • Shearer G and Kohl DH (1986) N2-fixation in field settings:estimations based on natural 15N abundance. Aust. J. Plant Physiol. 13:699–757.

    CAS  Google Scholar 

  • Shearer G, Kohl DH, and Chien SH (1978) The nitrogen-15 abundance in a wide variety of soils. Soil Sci. Soc. Am. J. 42:899–902.

    CAS  Google Scholar 

  • Shearer G, Kohl DH, and Harper JE (1980) Distribution of 15N among plant parts of nodulating and non-nodulating isolines of soybeans. Plant Physiol. 66:57–60.

    Article  PubMed  CAS  Google Scholar 

  • Shearer G, Kohl DH, Virginia RA, Bryan BA, Skeeters JL, Nilsen ET, Sharifi MR, and Rundel PW (1983) Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran Desert ecosystems. Oecologia (Berlin) 56:365–373.

    Article  Google Scholar 

  • Silvester WB (1983) Analysis of N2 fixation, pp. 172–212. In Gordon JC and Wheeler CT (editors), Biological Nitrogen Fixation in Forest Ecosystems:Foundations and Applications. Martinus Nijhoff/Dr W Junk, Boston.

    Google Scholar 

  • Sprent J (1979) The Biology of Nitrogen Fixation. McGraw-Hill, New York (see pp. 91–94 ).

    Google Scholar 

  • Steele KW (1983) Quantitative measurements of nitrogen turnover in pasture systems with particular reference to the role of 15N. In Nuclear Techniques in Improving Pasture Management, pp. 17–35. International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Steele KW, Bonish BM, Daniel RM, and O’Hara GW (1983) Effect of rhizobial strains and host plant on nitrogen isotopic fractionation in legumes. Plant Physiol. 72:1001– 1004.

    Google Scholar 

  • Steele KW and Wilson AT (1981) Nitrogen isotope ratios in surface horizons of New Zealand improved grassland soil. N.Z. J. Agric. Res. 24:167–170.

    Google Scholar 

  • Tiessen H, Karamanos RE, Stewart JWB, and Selles F (1984) Natural nitrogen 15 abundance as an indicator of soil organic matter transformations in native and cultivated soils. Soil Sci. Soc. Am. J. 48:312–315.

    CAS  Google Scholar 

  • Turner GL and Bergersen FJ (1983) Natural abundance of 15N in root nodules of soybean, lupin, subterranean clover and lucerne. Soil Biol. Biochem. 15:525–530.

    Google Scholar 

  • Turner GL and Gibson AH (1980) Measurement of nitrogen fixation by indirect means, pp. 111–138. In Bergersen FJ (editor), Methods for Evaluating Biological Nitrogen Fixation. John Wiley and Sons, New York.

    Google Scholar 

  • Virginia RA (1980) Natural abundance of nitrogen-15 in selected ecosystems. Ph.D. Thesis, University of California, Davis.

    Google Scholar 

  • Virginia RA, Baird LM, La Favre JS, Jarrell WM, Bryan BA, and Shearer G (1984) Nitrogen fixing efficiency, natural 15N abundance, and morphology of mesquite (Prosopis glandulosa) root nodules. Plant Soil 79:273–284.

    Article  CAS  Google Scholar 

  • Virginia RA and Delwiche CC (1982) Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia (Berlin) 54:317–325.

    Article  Google Scholar 

  • Virginia RA and Jarrell WM (1983) Soil properties in a mesquite-dominated Sonoran Desert Ecosystem. Soil Sci. Soc. Am. Proc. 47, 138–144.

    Article  CAS  Google Scholar 

  • Vose PB and Victoria RL (1983) Reevaluation of the limitations of 15N isotope dilution technique for the field measurement of dinitrogen fixation. Special Symposium, American Society of Agronomy Annual Meeting. Washington, D.C., August 1983.

    Google Scholar 

  • Wada E (1980) Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments, pp. 375–398. In Goldberg ED (editor), Isotope Marine Chemistry. Uchida Rokakuho, Tokyo.

    Google Scholar 

  • Wada E and Hattori A (1976) Natural abundance of 15N in particulate organic matter in the North Pacific ocean. Geochim. Cosmochim. Acta 40:249–251.

    Google Scholar 

  • Wada E and Hattori A (1978) Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiol. J. 1:85–101.

    Article  CAS  Google Scholar 

  • Wagner GH and Zapata F (1982) Field evaluation of reference crops in the study of nitrogen fixation by legumes using isotope techniques. Agron. J. 74:607–612.

    Article  Google Scholar 

  • Whittaker RH and Marks PL (1975) Methods in assessing terrestrial productivity, pp. 55–119. In Lieth H and Whittaker RH (editors), Primary Productivity in the Biosphere. Springer-Verlag, New York.

    Google Scholar 

  • Witty JF (1983a) Estimating N2-fixation in the field using 15N-labeled fertilizer:some problems and solutions. Soil Biol. Biochem. 15:631–639.

    Google Scholar 

  • Witty JF (1983b) Measurement of N2-fixation by 15N fertilizer dilution:problems of declining soil enrichment, pp. 253–266. In Jones DG and Davies DR (editors), Temperate Legumes:Physiology Genetics and Nodulation. Pitman, London.

    Google Scholar 

  • Witty JF (1984) Slow-release fertilizer formulations to measure N2-fixation by isotope dilution. Soil Biol. Biochem. 16:657–661.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Shearer, G., Kohl, D.H. (1989). Estimates of N2 Fixation in Ecosystems: The Need for and Basis of the 15N Natural Abundance Method. In: Rundel, P.W., Ehleringer, J.R., Nagy, K.A. (eds) Stable Isotopes in Ecological Research. Ecological Studies, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3498-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3498-2_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8127-6

  • Online ISBN: 978-1-4612-3498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics