Advertisement

Intracellular Mechanisms in GH Control

  • G. Schettini
  • T. Florio
  • O. Meucci
  • E. Landolfi
  • M. Grimaldi
  • G. Magri
  • B. Merola
  • G. Lombardi
Conference paper
Part of the Neuroendocrine Perspectives book series (NEUROENDOCRINE, volume 6)

Abstract

The neuroendocrine regulation of GH secretion involves two major factors of hypothalamic origin: the recently isolated GH releasing hormone (GRF) and the inhibitory factor somatostatin (SRIF) (1–5). After having been secreted into the hypophyseal portal blood, these factors reach the anterior pituitary gland, where they interact with specific receptors (probably located on somatotrophs), thus eliciting physiological responses.

Keywords

Growth Hormone Pertussis Toxin Anterior Pituitary Cell Pituitary Growth Hormone Growth Hormone Release Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brazeau P, Vale W, Burgess R, Ling N, Buccern RN, Rivier J (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79PubMedCrossRefGoogle Scholar
  2. 2.
    Esch FS, Bohlen P, Ling N, Brazeau P, Wehremberg WV, Thorner MO, Cronin MJ, Guillemin R (1982) Characterization of a 40 residue peptide from human pancreatic tumor with growth hormone releasing activity. Biochem Biophys Res Commun 109: 152–158PubMedCrossRefGoogle Scholar
  3. 3.
    Spiess J, Rivier J, Vale W (1983) Characterization of a rat hypothalamic growth hormone releasing factor. Nature 303: 532–535PubMedCrossRefGoogle Scholar
  4. 4.
    Spiess J, Rivier J, Thorner MO, Vale W (1982) Sequence analysis of a growth hormone releasing factor from a human pancreatic islet tumor. Biochemistry 21: 6037–6040PubMedCrossRefGoogle Scholar
  5. 5.
    Brazeau P, Bohlen P, Guillemin R (1982) Mechanism of the antagonism between growth hormone releasing factor (GRF) and somatostatin on the release of pituitary growth hormone. 64th Annual Meeting of the Endocrine Society Abs. 538.Google Scholar
  6. 6.
    Brazeau P, Ling N, Esch FS, Bohlen P, Mougin C Guillemin R (1982) Somatocrinine (growth hormone releasing factor) in vitro bioactivity; Ca2+ involvement, cAMP mediated action and additivity of effect with PGE2. Biochem Biophys Res Commun 109: 588–595PubMedCrossRefGoogle Scholar
  7. 7.
    Schramm M, Sellinger Z (1984) Message transmission receptor controlled adenylate cyclase system. Science 225: 1350–1356PubMedCrossRefGoogle Scholar
  8. 8.
    Vale W, Brazeau P, Rivier C, Brown M, Boss B, Rivier LD, Burgus N, Ling N, Guillemin R (1975) Somatostatin. Recent Prog Horm Res 31: 265–279Google Scholar
  9. 9.
    MacLeod RM, Lehmeyer JE (1970) Release of pituitary growth hormone by prostaglandins and dibutyryl adenosine S’S’-monophosphate in absence of protein synthesis. Proc Natl Acad Sci USA 67: 1172–1175PubMedCrossRefGoogle Scholar
  10. 10.
    Cronin MJ, Rogol AD, McLeod RM, Keefer DA, Login IS, Borges JCL, Thorner MO (1983) Biological activity of a growth hormone releasing factor secreting by a human tumor. Am J Physiol 244: E346-E355PubMedGoogle Scholar
  11. 11.
    Bilezykjian LM, Vale W (1983) Stimulation of adenosine S’S’-monophosphate production by growth hormone releasing factor and its inhibition by somatostatin in anterior pituitary cells in vitro. Endocrinology 113: 1726–1731CrossRefGoogle Scholar
  12. 12.
    Schettini G, Cronin MJ, Hewelett EL, Thorner MO, MacLeod RM (1984) Human pancreatic tumor growth hormone releasing factor stimulates anterior pituitary adenylate cyclase activity, adenosine 3 ’5 ’-monophosphate accumulation and growth hormone release in a calmodulin dependent manner. Endocrinology 115: 1308–1314PubMedCrossRefGoogle Scholar
  13. 13.
    Schettini G, Florio T, Meucci O, Landolfi E, Lombardi G, Marino A (1988) Somatostatin inhibition of anterior pituitary adenylate cyclase activity: different sensitivity between male and female rats. Brain Res 439: 322–329PubMedCrossRefGoogle Scholar
  14. 14.
    Cronin MJ, Rogol AD, Myers GA, Hewelett EM (1983) Pertussis toxin blocks the somatostatin inhibition of growth hormone release and adenosine S’S’-monophosphate accumulation. Endocrinology 113: 209–215PubMedCrossRefGoogle Scholar
  15. 15.
    Cronin MJ, Rogol AD (1984) Sex difference in the cyclic adenosine 3’5’-monophosphate and growth hormone response to growth hormone releasing factor in vitro. Biol Reproduction 31: 984–988CrossRefGoogle Scholar
  16. 16.
    Login IS, Judd AM, MacLeod RM (1986) Association of mobilization with stimulation of growth hormone release by GH-releasing factor in dispersed normal anterior pituitary cells. Endocrinology 118: 239–243PubMedCrossRefGoogle Scholar
  17. 17.
    Pandiella A, Reza Elahi F, Vallar L, Spada A (1987) Alpha-1 adrenergic stimulation of cytosolic Ca++ concentration and growth hormone secretion in rat somatotrophs. J Endocrinol Invest 10 (Suppl.3): 35Google Scholar
  18. 18.
    Schlegel W, Wuarin F, Wollheim CB, Zahnd GR (1984) Somatostatin lowers the cytosolic free Ca++ concentration in clonal rat pituitary cells (GH3 cells). Cell Calcium 5: 223–236PubMedCrossRefGoogle Scholar
  19. 19.
    Lewis DL, Weight F, Luini A (1986) A guanine nucleotide binding protein mediates inhibition of voltage dependent calcium current by somatostatin in a pituitary cell line. Proc Natl Acad Sci USA 83: 9035–9039PubMedCrossRefGoogle Scholar
  20. 20.
    Sussman KE, Leitner JW, Draznin B (1987) Cytosolic free calcium concentrations in normal pancreatic islet cells: effect of secretagogues and somatostatin. Diabetes 36: 571–577PubMedCrossRefGoogle Scholar
  21. 21.
    Schlegel W, Wuarin F, Zbaren C, Wollheim CB Zahnd GR (1985) Pertussis toxin selectively abolishes hormone induced lowering of cytosolic calcium in GH3 cells. FEBS Lett. 189: 27–32PubMedCrossRefGoogle Scholar
  22. 22.
    Login IS, Judd AM (1986) Trophic effects of somatostatin on calcium flux: dynamic analysis and correlation with pituitary hormone release Endocrinoloy 119: 1703–1707CrossRefGoogle Scholar
  23. 23.
    Yasumoto T, Nakajima I, Oshima Y, Bagnis R (1979) A new toxic dinoflagellate found in association with ciguatera. In Taylo DL and Selinger H (eds) Toxic Dinoflagellate Blooms. New York: Elsevier: pp 65–70.Google Scholar
  24. 24.
    Takahashi M, Tatsumi M, Okizumi Y, Yasumoto T (1983) Ca2+ channel activating function of maitotoxin, the most potent marine toxin known, in clonal rat pheochromocytoma cells. J Biol Chem 258: 10944–10949PubMedGoogle Scholar
  25. 25.
    Freedman SB, Miller RJ, Miller DM, Tindall Dr (1984) Interaction of maitotoxin with voltage sensitive calcium channels in cultured neuronal cells. Proc Natl Acad Sci USA 81: 4582–4585PubMedCrossRefGoogle Scholar
  26. 26.
    Schettini G, Koike K, Login IS, Judd AM, Cronin MJ, Yasumoto T, MacLeod RM (1984) Maitotoxin stimulates hormonal release and calcium flux in rat anterior pituitary cells in vitro. Am J Physiol 247: E520-E525PubMedGoogle Scholar
  27. 27.
    Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360PubMedGoogle Scholar
  28. 28.
    Nishizuka Y (1984) The role of protein kinase C in cell surface signal and tumor promotion. Nature 308: 693–698PubMedCrossRefGoogle Scholar
  29. 29.
    Canonico PL, Cronin MJ, Thorner MO, MacLeod RM (1983) Human pancreatic GRF stimulates phosphatidylinositol labelling in cultured anterior pituitary cells. Am J Physiol 245: E587-E590PubMedGoogle Scholar
  30. 30.
    Ohmura E, Tsushima T, Murakami H, Wakai K, Shizume K (1984) Effect of phorbol esters on the release of growth hormone and prolactin from rat pituitary cells cultured in monolayer. Acta Endocrinol 107: 185–190PubMedGoogle Scholar
  31. 31.
    Summers ST, Canonico PL, MacLeod RM, Rogol AD, Cronin MJ (1985) Phorbol esters affect pituitary growth hormone and prolactin release: interaction with GHreleasing factor, somatostatin and bromocriptine. Eur J Pharmacol 111: 371–376PubMedCrossRefGoogle Scholar
  32. 32.
    Cronin MJ, Canonico PL (1985) Tumor promoters enhance basal and growth hormone releasing factor stimuated cyclic AMP levels in anterior pituitary cells. Biochem Biophys Res Commun 129: 404–410PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • G. Schettini
    • 1
  • T. Florio
    • 1
  • O. Meucci
    • 1
  • E. Landolfi
    • 1
  • M. Grimaldi
    • 1
  • G. Magri
    • 1
  • B. Merola
    • 2
  • G. Lombardi
    • 2
  1. 1.Department of PharmacologyII School of Medicine, University of NaplesNaplesItaly
  2. 2.Department of EndocrinologyII School of Medicine, University of NaplesNaplesItaly

Personalised recommendations