Evidence Against D2 Dopaminergic Influence on Phosphoinosotde Metabolism in Pituitary and Neural Cells

  • J. G. Baird
  • A. B. Cubitt
  • B. L. Brown
  • P. R. M. Dobson
Conference paper
Part of the Neuroendocrine Perspectives book series (NEUROENDOCRINE, volume 6)

Abstract

Prolactin secretion from the adenohypophysis is known to be under the tonic inhibitory control of the hypothalamus. Dopamine (DA) is believed to be the major inhibitory influence, being released from tuberoinfundibular dopaminergic neurons and transported to the pituitary gland via the hypophysial portal vessels. High affinity saturable and stereoselective DA receptors have been identified in adenohypophysial homogenates (see refs. 1–3); these have been characterized as the D2 type (4). Immunostaining has shown these receptors to be located on the lactotrophs (5). While there is considerable evidence from our group and others to show that dopamine can reduce intracellular cyclic AMP (cAMP) levels in adenohypophysial cells (see refs. 6,7), this cannot fully account for the observed inhibition of prolactin secretion, nor its mechanism.

Keywords

Dopamine Adenoma Prolactin Theophylline Neuroblastoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Creese I, Schneider R, Snyder SH (1977) 3H-spiroperidol labels dopamine receptors in pituitary and brain. Eur J Pharmacol 46: 377–381PubMedCrossRefGoogle Scholar
  2. 2.
    Cronin MJ, Roberts JM, Weiner RI (1978) Dopamine and dihydroergocryptine binding to the anterior pituitary and other brain areas of the rat and sheep. Endocrinology 103: 302–309PubMedCrossRefGoogle Scholar
  3. 3.
    Cronin MJ, Weiner RI (1979) [3H]spiroperidol (spiperone) binding to a putative dopamine receptor in sheep and steer pituitary and stalk median eminence. Endocrinology 104: 307–312PubMedCrossRefGoogle Scholar
  4. 4.
    Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96PubMedCrossRefGoogle Scholar
  5. 5.
    Goldsmith PC, Cronin MJ, Rubin RJ, Weiner RI (1978) Immunocytochemical staining of dopamine receptors on mammotrophs. VHIth Annual Meeting of Society for Neuroscience, St Louis, MO, Abstract 1098Google Scholar
  6. 6.
    Barnes GD, Brown BL, Gard TG, Atkinson D,. Ekins RP (1978) Effect of TRH and dopamine on cyclic AMP levels in enriched mammotroph and thyrotroph cells. Mol Cell Endocrinol 12: 273–284PubMedCrossRefGoogle Scholar
  7. 7.
    Ray KP, Wallis M (1983) Actions of dopamine on prolactin secretion and cyclic AMP metabolism in ovine pituitary cells. Mol Cell Endocrinol 27: 139–155CrossRefGoogle Scholar
  8. 8.
    Canonico PL, Valdenegro CA, MacLeod RM (1982) Dopamine inhibits 32P incorporation into phosphatidylinositol in the anterior pituitary of rats. Endocrinology 111: 347–349PubMedCrossRefGoogle Scholar
  9. 9.
    Brown BL, Baird JG, Quilliam LA, Merritt JE, Dobson PRM (1985) Calcium-mediated intracellular signalling in the control of prolactin secretion from rat anterior pituitary cells. In: MacLeod RM, Thorner MO, Scapagnini U (eds) Prolactin, Basic and Clinical Correlates. Fidia Research Ser. Vol. 1., Liviana Press: Padova: pp 199–204Google Scholar
  10. 10.
    Dobson PRM, Brown BL (1985) The preparation, culture and incubation of rat anterior pituitary cells for static and dynamic studies of secretion. Meth Enzymol 109: 293–298PubMedCrossRefGoogle Scholar
  11. 11.
    Berry-Kravis E, Freedman SB, Dawson, G (1984) Specific mediated inhibition of cyclic AMP synthesis by dopamine in a neuroblastoma x brain hybrid cell line NCB-20. J Neurochem 43: 413–420PubMedCrossRefGoogle Scholar
  12. 12.
    Baird JG, Dobson PRM, Wojcikiewicz RJH, Brown BL (1983) Thyrotropin-releasing hormone stimulates inositol phosphate production in normal anterior pituitary cells and GH3 tumour cells in the presence of lithium. Bioscience Reports 3: 1091–1099PubMedCrossRefGoogle Scholar
  13. 13.
    Jolles J, Zwiers H, Dekker A, Wirtz KWA, Gispen WH (1981) Cortieotropin-(l-24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain. Biochem J 194: 283–291PubMedGoogle Scholar
  14. 14.
    Creba J A, Downes P, Hawkins PT, Bewster G, Michell RH, Kirk CJ (1983) Rapid breakdown of phosphatidyl inositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes. Biochem J 212: 733–747PubMedGoogle Scholar
  15. 15.
    Canonico PL, Valdenegro CA, MacLeod RM, O’Dell SB, Harcus CT (1983) The inhibition of phosphatidylinositol turnover: a possible postreceptor mechanism for the prolactin secretion-inhibiting effect of dopamine. Endocrinology 113: 7–14PubMedCrossRefGoogle Scholar
  16. 16.
    Cubitt AB, Brown BL, Dobson PRM (1987) Activation of dopamine receptors does not affect phosphoinositide turnover in NCB 20 cells. J Neurochem 49: 183–188PubMedCrossRefGoogle Scholar
  17. 17.
    Ray KP, Wallis M (1981) Effects of dopamine on prolactin secretion and cyclic AMP accumulation in the rat anterior pituitary gland. Biochem J 194: 119–128PubMedGoogle Scholar
  18. 18.
    Swennen L, Denef C (1982) Physiological concentrations of dopamine decrease adenosine 3′,5′-monophosphate levels in cultured rat anterior pituitary cells and enriched populations of lactotrophs. Evidence for a causal relationship to inhibition of prolactin release. Endocrinology 111: 398–405PubMedCrossRefGoogle Scholar
  19. 19.
    DeCamilli P, Macconi D, Spada A (1979) Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas. Nature 278: 252–254CrossRefGoogle Scholar
  20. 20.
    Onali P, Schwartz JP, Costa E (1981) Dopaminergic modulation of adenylate cyclase stimulation by vasoactive intestinal peptide in anterior pituitary. Proc Natl Acad Sci USA 78: 6531–6534PubMedCrossRefGoogle Scholar
  21. 21.
    Cronin MJ, Myers, GA, MacLeod RM, Hewlett EL (1983) Pertussis toxin uncouples dopamine agonist inhibition of prolactin release. Am J Physiol 244: E499-E504Google Scholar
  22. 22.
    Delbecke D, Scammell JC, Mortinez-Campos A, Dannies PS (1986) Dopamine inhibits prolactin release when cyclic AMP levels are elevated. Endocrinology 118: 1271–1277CrossRefGoogle Scholar
  23. 23.
    Thorner MO, Hackett JT, Murad F, MacLeod RM (1980) Calcium rather than cyclic AMP as the physiological intracellular regulator of prolactin release. Neuroendocrinology 31: 390–402PubMedCrossRefGoogle Scholar
  24. 24.
    Merritt JE, Brown BL (1984) The possible involvement of both Ca2+ and cyclic AMP in the dopaminergic inhibition of prolactin secretion. Life Sci 35: 707–711PubMedCrossRefGoogle Scholar
  25. 25.
    Schettini G, Cronin MJ, MacLeod RM (1983) cAMP and calcium-calmodulin interrelation in the control of prolactin secretion: evidence for dopamine inhibition of cAMP accumulation and prolactin release after calcium mobilization. Endocrinology 112: 1801–1807PubMedCrossRefGoogle Scholar
  26. 26.
    Schofield JG (1983) Use of a trapped fluorescent indicator to demonstrate effects of thyroliberin and dopamine on cytoplasmic calcium concentrations in bovine anterior pituitary cells. FEBS Letts 159: 79–82CrossRefGoogle Scholar
  27. 27.
    Malgaroli A, Vallar L, Elahi FR, Pozzan T, Spada A, Meldolesi J (1987) Dopamine inhibits cytosolic Ca2+ increases in rat lactotroph cells. J Biol Chem 262: 13920–13927PubMedGoogle Scholar
  28. 28.
    Gershengorn MC (1986) Mechanism of thyrotropin releasing hormone stimulation of pituitary hormone secretion. Ann Rev Physiol 48: 515–526CrossRefGoogle Scholar
  29. 29.
    Simmonds SH, Strange PG (1985) Inhibition of inositol phospholipid breakdown by D2 dopamine receptors in dissociated bovine anterior pituitary cells. Neurosci Letts 60: 267–272CrossRefGoogle Scholar
  30. 30.
    Enjalbert A, Sladeczek F, Guillon G, Bertrand P, Shu C, Epelbaum J, Garcia-Sainz A, Jard S, Lombard C, Kordon C, Bockaert J (1986) Angiotensin II and dopamine modulate both cAMP and inositol phosphate productions in anterior pituitary cells. J Biol Chem 261: 4071–4075PubMedGoogle Scholar
  31. 31.
    Canonio PL, Jarvis WD, Judd AM, MacLeod RM (1986) Dopamine does not attenuate phosphoinositide hydrolysis in rat anterior pituitary cells. J Endocrinol 110: 389–393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • J. G. Baird
    • 1
  • A. B. Cubitt
  • B. L. Brown
    • 1
  • P. R. M. Dobson
    • 1
  1. 1.Department of Human Metabolism & Clinical BiochemistryUniversity of Sheffield Medical SchoolSheffieldEngland, UK

Personalised recommendations