Skip to main content

Subrecursion and lambda representation over free algebras

(Preliminary summary)

  • Chapter
Feasible Mathematics

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 9))

Synopsis

As a contribution to ongoing research on computing over general algebraic structures, we consider subrecurrence over free algebras. Since the natural sub-recursive classification of functions by recurrence-nesting depth fails to separate polynomial from exponential numeric functions, we define a subrecursive hierarchy {T n}n which does, based on nesting depth of a newly defined tiered recurrence.

We show that, for algebras with at least one non-unary function, no non-trivial level of (at least one variant of) the hierarchy is finitely generated. This contrasts with the result of [Par68] about numeric subrecursion, and therefore testifies to a fundamental dissimilarity between numeric computing and general algebraic computing.

One variant of tiered recurrence yields T 2 = the functions over free algebras A-representable in the simply typed ⋋calculus 1⋋. This characterization is akin to the main result of [Zaiα]. We conclude that the class of functions over trees that are representable in 1⋋ is not finitely generated, corroborating a conjecture in [Zai90].

Research partially supported by onr grant N00014-84-K-0415 and by darpa grant F33615-81-K-1539.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Axt, Iteration of primitive recursion, Zeit, für mathematische Logik u. Grundlagen d. Math 11 (1965) 253–255.

    Article  Google Scholar 

  2. Corrado Böhm and Allessandro Berarducci, Automatic synthesis of typed X-programs on term algebras, Theoretical Computer Science 39 (1985) 135–154.

    Article  Google Scholar 

  3. Michael Garey and David Johnson, Computers and Intractability, Freeman, San Francisco, 1979.

    Google Scholar 

  4. A. Grzegorczyk, Some classes of recursive functions, Rozprawy Mate. IV, Warsaw, 1953.

    Google Scholar 

  5. W. Heinermann, Untersuchungen über die Rekursionszahlen rekursiver Funktionen, Dissertation, Universität Munster, 1961.

    Google Scholar 

  6. Daniel Leivant, Reasoning about functional programs and complexity classes associated with type disciplines, Twenty-fourth Annual Symposium on Foundations of Computer Science (1983) 460–469.

    Google Scholar 

  7. Daniel Leivant, Stratified polymorphism, Proceedings of the Fourth Annual Symposium of logic in Computer Science, IEEE Computer Society, Washington DC, 1989, 39–47.

    Book  Google Scholar 

  8. Daniel Leivant, Strictly predicative arithmetic, manuscript, 1990, submitted for publication.

    Google Scholar 

  9. Daniel Leivant, Monotonie use of space and computational complexity over finite structures, manuscript, 1990, submitted for publication.

    Google Scholar 

  10. H. Müller, Characterization of the elmentary functions in terms of deapth of nesting of primitive recursions, Recursive Function Theory Newsletters 5 (1973) 14–15. Initially reported in Dissertation, Universität Münster, 1973(7).

    Google Scholar 

  11. Edward Nelson, Predicative Arithmetic, Princeton University Press, Princeton, 1986.

    Google Scholar 

  12. Charles Parsons, Hierarchies of primitive recursive functions, Zeitschr. für Logik und Grundlagen der Mathematik 14 (1968) 357–376.

    Article  Google Scholar 

  13. H.E. Rose, Subrecursion, Clarendon Press (Oxford University Press), Oxford, 1984.

    Google Scholar 

  14. Helmut Schwichtenberg, Rekursionszahlen und die Grzegorczyk-Hierarchie, Archiv für mathematische Logik 12 (1969) 85–97.

    Article  Google Scholar 

  15. Helmut Schwichtenberg, Definierbare Funktionen im Lambda-Kal- kul mit Typen, Archiv Logik Grundlagenforsch. 17 (1976) 113–114.

    Article  Google Scholar 

  16. Richard Statman, The typed ⋋-calculus is not elementary recursive, Theoretical Computer Science 9 (1979) 73–81.

    Article  Google Scholar 

  17. Marek Zaionc, Word operations definable in typed ⋋-calculus, Theoretical Computer Science 52 (1987).

    Google Scholar 

  18. Marek Zaionc, How to define Junctionals on free structures in typed ⋋ calculus, in H. Ganzinger (ed.), European Symposium on Porgramming (ESOP’88), Springer-Verlag (LNCS # 379), Berlin, 1988.

    Google Scholar 

  19. Zai90 Marek Zaionc, A characterization of ⋋-definable tree operations, to appear in Information and Computation.

    Google Scholar 

  20. Zaia Marek Zaionc, ⋋-definability on free algebras, manuscript submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Leivant, D. (1990). Subrecursion and lambda representation over free algebras. In: Buss, S.R., Scott, P.J. (eds) Feasible Mathematics. Progress in Computer Science and Applied Logic, vol 9. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3466-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3466-1_16

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3483-4

  • Online ISBN: 978-1-4612-3466-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics