Skip to main content

Computational Models For Feasible Real Analysis

  • Chapter
Book cover Feasible Mathematics

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 9))

Abstract

This expository work discusses the conventional oracle Turing machine model of recursive analysis and proposes an alternative one based on uniform Boolean circuit families. This replacement model is suitable for the study of both sequential and parallel computations. However, for the study of operators, even this model should be replaced by a more structured one based on uniform arithmetic circuit families.

Research supported by the Natural Sciences and Engineering Research Council of Canada, grant OGP 38937.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Aberth. Analysis in the computable number field. J. Assoc. Comput. Mach., 15 (1968), pp. 275–299.

    Google Scholar 

  2. O. Aberth. The concept of effective method applied to linear algebra. J. Comput. System Sci., 5 (1971), pp. 17–25.

    Article  Google Scholar 

  3. O. Aberth. The failure in computable analysis of a classical existence theorem for differential equations. Proc. Amer. Math. Soc., 30 (1971), pp. 151–156.

    Article  Google Scholar 

  4. O. Aberth. Computable Analysis. McGraw-Hill. 1980.

    Google Scholar 

  5. J. M. Borwein and P. B. Borwein. On the complexity of familiar functions and numbers. SIAM Rev., 30 (1988), pp. 589–601

    Article  Google Scholar 

  6. E. Bishop. Foundations of Constructive Analysis. McGraw-Hill. 1967.

    Google Scholar 

  7. E. Bishop and D. Bridges. Constructive Analysis. Springer-Verlag. 1985.

    Google Scholar 

  8. L. Blum and M. Shub. Evaluating rational functions: infinite precision is finite cost and tractable on average. Proc 25 IEEE Symp. on Found, of Comp. Sci., 1984, pp. 261–267.

    Google Scholar 

  9. D. S. Bridges. Constructive Functional Analysis. Pitman, London. 1979.

    Google Scholar 

  10. H. Friedman. The computational complexity of maximization and integration. Adv. in Math., 53 (1984), pp. 80–98.

    Article  Google Scholar 

  11. J. von zur Gathen. Algebraic complexity theory. Ann. Rev. Comput. Sci. 3 (1988), 317–347.

    Article  Google Scholar 

  12. A. Grzegorczyk. On the definition of computable real continuous functions. Fund. Math., 44 (1957), pp. 61–71.

    Google Scholar 

  13. A. Grzegorczyk. Some approaches to constructive analysis. In Constructivity in mathematics, A. Heyting, ed. North-Holland. 1959, pp. 43–61.

    Google Scholar 

  14. A. Heyting. Intuitionism. 3rd revised ed. North-Holland. 1976

    Google Scholar 

  15. H. J. Hoover. Feasibly constructive analysis. Ph.D. thesis and Tech. Report 206/87, Department of Computer Science, University of Toronto, Toronto, Canada, 1987.

    Google Scholar 

  16. H. J. Hoover. Real Functions, Contraction Mappings, and P- completeness. Technical report TR89-3, March 1989, Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada.

    Google Scholar 

  17. H. J. Hoover. Feasible Real Functions and Arithmetic Circuits. To appear in SIAM J. Comput., 19(1990).

    Google Scholar 

  18. K. Ko. The maximum value problem and NP real numbers. J. Comput. System Sci., 24 (1982), pp. 15–35.

    Article  Google Scholar 

  19. K. Ko. Some negative results on the computational complexity of total variation and differentiation. Inform, and Control, 53 (1982), pp. 21–31.

    Article  Google Scholar 

  20. K. Ko. Reducibilities on real numbers. Theoret. Comput. Sci., 31 (1984), pp. 101–123.

    Article  Google Scholar 

  21. K. Ko. Applying techniques of discrete complexity theory to numerical computation. In Studies in Complexity Theory, R.V. Book, ed., Pitman, London, 1986, pp. 1 – 62.

    Google Scholar 

  22. K. Ko. Binary search for roots of real functions is inherently sequential. This volume.

    Google Scholar 

  23. K. Ko and H. Friedman. Computational complexity of real functions. Theoret. Comput. Sci., 20 (1982), pp. 323–352.

    Article  Google Scholar 

  24. D. Lacombe. Extension de la notion de fonction recursive aux fonctions d’une ou plusieurs variables réelles. Comptes Rendus 240(1955) pp. 2478–2480, 241(1955) pp. 13–14, 151–153, 1250–1252.

    Google Scholar 

  25. D. Lacombe. Les ensembles récursivement ouverts ou fermés et leurs applications à Vanalyse récursive. Comptes Rendus 244(1957) pp. 838–840, 996–997, 245 (1957) pp. 1040–1043.

    Google Scholar 

  26. A. A. Markov. Theory of Algorithms. 1949. Translated by Jacques J. Schorr-Kon and PST staff, Academy of Sciences of the USSR, Moscow, 1954.

    Google Scholar 

  27. J. Myhill. A recursive function, defined on a compact interval and having a continuous derivative that is not recursive. Michigan Math. J., 18 (1971), pp. 97–98.

    Article  Google Scholar 

  28. M. B. Pour-El and I. Richards. Noncomputability in analysis and physics: a complete determination of the class of noncomputable linear operators. Adv. in Math., 48 (1983), pp. 44–74.

    Article  Google Scholar 

  29. M. O. Rabin.Computable algorithms, general theory and theory of computable fields. Trans. Amer. Math. Soc., 95 (1960), pp. 341–360.

    Google Scholar 

  30. J. C. Shepherdson. On the definition of computable function of a real variable. Z. Math. Logik Grundlag. Math., 22 (1976), pp. 391–402.

    Article  Google Scholar 

  31. E. Specker. Nicht Konstrucktiv Beweisbare Sutze der Analysis. J. Symbolic Logic. 14 (1949), pp. 145–158.

    Article  Google Scholar 

  32. A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc., (2), 42 (1936/37), pp. 230–265.

    Google Scholar 

  33. A. M. Turing. A correction. Proc. London Math. Soc., (2), 43 (1937), pp. 544–546.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Hoover, H.J. (1990). Computational Models For Feasible Real Analysis. In: Buss, S.R., Scott, P.J. (eds) Feasible Mathematics. Progress in Computer Science and Applied Logic, vol 9. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3466-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3466-1_13

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3483-4

  • Online ISBN: 978-1-4612-3466-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics