Advertisement

Elementary Proof of a Theorem of Bateman

  • Michel Balazard
  • Abdelhakim Smati
Chapter
Part of the Progress in Mathematics book series (PM, volume 85)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. T. Bateman, The distribution of values of Euler’s function, Acta Arith. 21 (1972), 329 - 345.MathSciNetMATHGoogle Scholar
  2. [2]
    H.G. Diamond, The distribution of values of Euler’s phi function, Proc. Symp. Pure Maths, AMS 24 (1973), 63 - 76.MathSciNetGoogle Scholar
  3. [3]
    R.E. Dressier, A density which counts multiplicity, Pacific J. Math. 34 (1970), 371 - 378.MathSciNetGoogle Scholar
  4. [4]
    P.Erdös, Some remarks on Euler’s ϕ-function and some related problems, Bull. Amer. Math. Soc. 51 (1945), 540–544.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    H. Halberstam, H.-E. Richert, Sieve Methods, Academic Press, 1974.Google Scholar
  6. [6]
    J.-L. Nicolas, Distribution des valeurs de la fonction d’Euler, L’ Ens. Math. 30 (1984), 331–338.MathSciNetMATHGoogle Scholar
  7. [7]
    I.J.Schoenberg, Über die asymptotische Verteilung reeler Zahlen mod. 1, Math. Z. 28 (1928), 171–199.MathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Smati, Répartition des valeurs de la fonction d’ Euler, L’ Ens. Math. 35 (1989), 61–76.MathSciNetMATHGoogle Scholar

Copyright information

© Bikhäuser Boston 1990

Authors and Affiliations

  • Michel Balazard
    • 1
  • Abdelhakim Smati
    • 1
  1. 1.Département de MathématiquesLimoges CedexFrance

Personalised recommendations