Best Possible Results on the Density of Sumsets

  • Melvyn B. Nathanson
Chapter
Part of the Progress in Mathematics book series (PM, volume 85)

Abstract

Mann and Kneser obtained lower bounds for the Shnirel’man density and lower asymptotic density of the sum of a finite number of sequences of non-negative integers. In this paper, special integer sequences are constructed to prove that these results are best possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Cheo, A remark on the A + β theorem, Proc. Amer. Math. Soc. 3 (1952), 175–177.MathSciNetMATHGoogle Scholar
  2. [2]
    F. J. Dyson, A theorem on the densities of sets of integers, J. London Math. Soc. 20 (1945), 8–14.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    G. Grekos, Répartition des densités des sous-suites d’une suite d’entiers, J. Number Theory 10 (1978), 177–191.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    G. Grekos and B. Volkman, On densities and gaps, J. Number Theory 26 (1987), 129–148.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459–484.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    B. Lepson, Certain best possible results in the theory of Schnirelmann density, Proc. Amer. Math. Soc. 1 (1950), 592–594.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Annals Math. 43 (1942), 523–527.MATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Melvyn B. Nathanson
    • 1
  1. 1.Lehman CollegeCUNYBronxUSA

Personalised recommendations