Some Canonical Properties of Nonlinear Systems

  • A. M. Perdon
  • G. Conte
  • C. H. Moog
Part of the Progress in Systems and Control Theory book series (PSCT, volume 3)


An algorithmic procedure is used to derive a special state space representation that displays, together with the algebraic structure at infinity, a new interesting set of integers which reflect a structural information on Σ analogous to that contained, in the linear case, in the list I3, of Morse [8].


Nonlinear System Meromorphic Function Structure Algorithm Algorithmic Procedure Canonical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.D. Di Benedetto, A Condition for the solvability of the Nonlinear Model Matching Problem, Colloque International d’Automatique Non Linéaire, Nantes, France, June 1988.Google Scholar
  2. [2]
    M.D. Di Benedetto, J.W. Grizzle and C.H. Moog, A Unified Notion of Rank for a Nonlinear System, Proc. 27th C.D.C. — I.E.E.E., Austin (1988), 926–931.Google Scholar
  3. [3]
    M. Fliess, Généralisation Non Linéaire de la Forme canonique de Commande et Linéarisation par Bouclage, C.R.A.S. Paris, Série I 308 (1989), 377–379.Google Scholar
  4. [4]
    A. Isidori, Control of Nonlinear Systems via Dynamic State-Feedback, in Algebraic and Geometric Methods in Nonlinear Control Theory, Proc. Conf. Paris, 1985, M. Fliess and M. Hazewinkel, eds., Reidel, Dordrecht, 1986.Google Scholar
  5. [5]
    A. Isidori and C.H. Moog, On the Equivalent of the Notion of Transmission Zeros, in Modelling and Adaptive Control, Proc. IIASA Conf., Sopron, Hungary, (1986), C.I. Byrnes and A. Kurszanski, eds., Lect. Notes Contr. Inf. Sci., vol. 105, Springer Verlag, Berlin, 1988, 146–158.CrossRefGoogle Scholar
  6. [6]
    F. Lamnabhi-Lagarrigue and P. Crouch, A formula for iterated derivatives along trajectories of nonlinear systems, Syst. Contr. Lett., 11 (1988), 1–7.CrossRefGoogle Scholar
  7. [7]
    C.H. Moog, Nonlinear Decoupling and Structure at Infinity, Math. Contr. Sign. Syst., 1 (1988), 257–268.CrossRefGoogle Scholar
  8. [8]
    A.S. Morse, Structural Invariants of Linear Multivariate Systems, SIAM J. Contr. Opt., 11 (1973), 446–465.CrossRefGoogle Scholar
  9. [9]
    S.N. Singh, A Modified Algorithm for Invertibility in Nonlinear Systems, I.E.E.E. Trans. Aut. Contr., AC-26 (1981), 595–598.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • A. M. Perdon
  • G. Conte
  • C. H. Moog

There are no affiliations available

Personalised recommendations