Skip to main content

Arithmetic of 3 and 4 Branch Point Covers

A bridge provided by noncongruence subgroups of SL2(ℤ)

  • Chapter
Séminaire de Théorie des Nombres, Paris 1987–88

Part of the book series: Progress in Mathematics ((PM,volume 81))

Abstract

The method of choice nowadays for achieving a group G as a Galois group of a regular extension of Q(x) goes under the heading of rigidity. It works essentially, only, to produce Galois extensions of Q(x) ramified over 3 points. The three rigidity conditions ((0.1) below) imply that G is generated in a very special way by two elements. Generalization of rigidity that considers extensions with any number r of branch points has been around even longer than rigidity (§5.1). Of the three conditions, the generalization of the transitivity condition, 0.1 c), requires only the addition of an action of the Hurwitz monodromy group H r (a quotient of the Artin braid group). But it also adds a 4th condition that in many situations amounts to asking for a Q-point on the Hurwitz space associated the data for the generators of G. Theorem 1 below -our main theorem- is that in the case r = 4 this is equivalent to finding a Q-point on a curve derived from a quotient of the upper half plane by a subgroup of PSL2(ℤ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.V. Belyi.- On Galois extensions of a maximal cyclotomic field,Izv. Akad. Nauk. SSSR, Ser. Mat. 43 (1979), 267–276.

    Google Scholar 

  2. R. Biggers and M. Fried.- Moduli spaces of covers and the Hurwitz monodromy group, J. fiir die reine und Angew. Math. 335 (1982), 87–121.

    Google Scholar 

  3. S. Diaz, R. Donagi and D. Harbater - Every curve is a Hurwitz space, preprint.

    Google Scholar 

  4. P. Debes and M. Fried - Arithmetic variation of fibers in families of curves Part I: Hurwitz monodromy []iteria for rational points on all members of the family; preprint.

    Google Scholar 

  5. W. Feit.- 03865 and 03867 as Galois groups over number fiels, J. of Alg. 104 (1986), 231–260.

    Google Scholar 

  6. M. Fried- Fields of definition of function fields and Hurwitz familiesComm. in Alg. 5(1) (1977), 17–82.

    Google Scholar 

  7. M. Fried- Galois group and complex multiplication, TAMS 235 141–163.

    Google Scholar 

  8. M. Fried - Rigidity and applications of the classification of simple groups to monodromy Part I-Super rational connectivity with examples; Part II-Applications of connectivity; Davenport and Hilbert-Siegel problems.

    Google Scholar 

  9. M. Fried and J.G. Thompson - The Hurwitz monodromy group H4 and modular curves, preprint.

    Google Scholar 

  10. A. Grothendieck.- G6om&trie formelle et gtomitrie alg&brique,Seminaire Bourbaki t. 11, 182 (1958/59).

    Google Scholar 

  11. R.C. Gunning- Lectures on Riemann Surfaces, Princeton Math. Notes (1966).

    Google Scholar 

  12. D. Hilbert.- Uber die Irreduzibilitat ganzer rationaler Funktionen, mit ganzzahligen Koeffizienten, J. Reine Angew. Math. 110 (1892), (Ges. Abh. II, 264–286).

    Google Scholar 

  13. H. Matzat.- Konstructive Galoistheorie, Lecture Notes in Math-Springer Verlag 1284 (1986).

    Google Scholar 

  14. H. Matzat.- Rationality []iteria for Galois Extensions, preprint.

    Google Scholar 

  15. K. Shih.- On the construction of Galois extensions of function fields and number fields, Matematische Annalen 207 (1974), 99–120.

    Google Scholar 

  16. J.G. Thompson.— Some finite groups which appear as Gal L/K where Kc Q(µn), J. of Alg. 98 (1984), 437–499.

    Google Scholar 

  17. A. Weil - The field of definition of a variety, Amer. J. Math.(1956), 78 509–524.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Fried, M. (1990). Arithmetic of 3 and 4 Branch Point Covers. In: Goldstein, C. (eds) Séminaire de Théorie des Nombres, Paris 1987–88. Progress in Mathematics, vol 81. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3460-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3460-9_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8032-3

  • Online ISBN: 978-1-4612-3460-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics