Skip to main content

The Blumenthal-Getoor-McKean Theorem Revisited

  • Chapter
Seminar on Stochastic Processes, 1989

Part of the book series: Progress in Probability ((PRPR,volume 18))

Abstract

The Blumenthal-Getoor-McKean theorem [BGM] (hereafter referred to as BGM) states that if X and \( \tilde{X} \) are two Markov processes with the same hitting distributions, then they may be time changed into each other. This is a deliberately loose statement and one needs to specify the precise hypotheses on X and \( \tilde{X} \) and also exactly what the conclusion means before it makes mathematical sense. In §V-5 of [BG] a precise statement and proof are given when X and \( \tilde{X} \) are standard processes as defined in [BG]. It is stated in several places in the literature that the proof in [BG] carries over to the case in which X and \( \tilde{X} \) are right processes. However, a careful reading of that proof reveals that the quasi-left-continuity (qlc) of X and \( \tilde{X} \) is used in a crucial manner at two points: the proofs of (V-5.4) and (V-5.20) in [BG]. The purpose of this paper is to give a careful proof of BGM for arbitrary right processes X and \( \tilde{X} \) as defined in [S].

The research of all three authors was supported, in part, by NSF Grant DMS87-21347.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Blumenthal and R. K. Getoor. Markov Processes and Potential Theory. Academic Press, New York, 1968.

    MATH  Google Scholar 

  2. R. M. Blumenthal, R. K. Getoor, and H. R. McKean, Jr. Markov processes with identical hitting distributions. Ill. J. Math., 6 (1962), 402–420, and supplement Ill. J. Math., 7 (1963), 540–542.

    MathSciNet  MATH  Google Scholar 

  3. R. V. Chacon and B. Jamison. A fundamental property of Markov processes with an application to equivalence under time changes. Israel J. Math., 33 (1979), 241–269.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. V. Chacon and B. Jamison. Processes with state dependent hitting probabilities. Adv. in Math., 32 (1979), 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Dellacherie et P. A. Meyer. Probabilités et Potentiel, II. Hermann, Paris, 1980.

    MATH  Google Scholar 

  6. C. Dellacherie et P. A. Meyer. Probabilités et Potentiel, IV. Hermann, Paris, 1987.

    MATH  Google Scholar 

  7. P. J. Fitzsimmons. Markov processes with identical hitting probabilities. Math. Z., 192 (1986), 547–554.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. J. Fitzsimmons. On the identification of Markov processes by the distribution of hitting times. Sem. Stoch. Proc, 1986, 15–19. Birkhäuser, Boston, 1987.

    Google Scholar 

  9. P. J. Fitzsimmons. Penetration times and Skorohod stopping. Sém. de Prob. XXII, Lecture Notes in Math., 1321, Springer, Berlin-Heidelberg-New York, 1988.

    Google Scholar 

  10. P. J. Fitzsimmons and B. Maisonneuve. Excessive measures and Markov processes with random birth and death. Probab. Th. Rel. Fields, 72 (1986), 319–336.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. K. Getoor. Some remarks on continuous additive functionals. Ann. Math. Stat., 38 (1967), 1655–1660.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. K. Getoor. Markov Processes: Ray Processes and Right Processes. Lecture Notes in Math., 440, Springer, Berlin-Heidelberg-New York, 1975.

    MATH  Google Scholar 

  13. R. K. Getoor. Transience and recurrence of Markov processes. Sém. de Prob. XIV, Lecture Notes in Math., 784, Springer, Berlin-Heidelberg-New York, 1980.

    Google Scholar 

  14. R. K. Getoor and J. Glover. Markov processes with identical excessive measures. Math. Z., 184 (1983), 287–300.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. K. Getoor and M. J. Sharpe. Balayage and multiplicative functionals. Z. Wahrscheinlichkeitstheorie verw. Geb., 28 (1974), 139–164.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. K. Getoor and M. J. Sharpe. Naturality, standardness, and weak duality for Markov processes. Z. Wahrscheinlichkeitstheorie verw. Geb., 67 (1984), 1–62.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. K. Getoor and J. Steffens. The energy functional, balayage, and capacity. Ann. Inst. Henri Poincaré, 23 (1987), 321–357.

    MathSciNet  Google Scholar 

  18. R. K. Getoor and J. Steffens. More about capacity and excessive measures. Sem. Stoch. Proc, 1987, 135–157. Birkhäuser, Boston, 1988.

    Google Scholar 

  19. J. Glover. Representing last exit potentials as potentials of measures. Z. Wahrscheinlichkeitstheorie verw. Geb., 61 (1982), 17–30.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Glover. Markov processes with identical hitting probabilities. Trans. Amer. Math. Soc., 275 (1983), 131–141.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Glover. Identifying Markov processes up to time change. Sem. Stoch. Proc., 1982, 171–194. Birkhäuser, Boston, 1983.

    Google Scholar 

  22. P. A. Meyer. Le schéma de remplissage en temps continu, d’après H. Rost. Sém. de Prob. VI, Lecture Notes in Math., 258, Springer, Berlin-Heidelberg-New York, 1972.

    Google Scholar 

  23. P. A. Meyer. Convergence faible et compacité des temps d’arrêt, d’après Baxter et Chacon. Sém. de Prob. XII, Lecture Notes in Math., 649, Springer, Berlin-Heidelberg-New York, 1978.

    Google Scholar 

  24. M. Rao. A note on Revuz measure. Sém. de Prob. XIV, Lecture Notes in Math., 784, Springer, Berlin-Heidelberg-New York, 1980.

    Google Scholar 

  25. H. Rost. The stopping distributions of a Markov process. Invent. Math., 14 (1971), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. J. Sharpe. General Theory of Markov Processes. Academic Press, San Diego, 1988.

    MATH  Google Scholar 

  27. J. B. Walsh. On the Chacon-Jamison theorem. Z. Wahrscheinlichkeitstheorie verw. Geb., 68 (1984), 9–28.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Fitzsimmons, P.J., Getoor, R.K., Sharpe, M.J. (1990). The Blumenthal-Getoor-McKean Theorem Revisited. In: Çinlar, E., Chung, K.L., Getoor, R.K., Fitzsimmons, P.J., Williams, R.J. (eds) Seminar on Stochastic Processes, 1989. Progress in Probability, vol 18. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3458-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3458-6_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3457-5

  • Online ISBN: 978-1-4612-3458-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics