The High Contact Principle in Optimal Stopping and Stochastic Waves

  • Bernt Øksendal
Part of the Progress in Probability book series (PRPR, volume 18)


The high contact principle in optimal stopping states that at the boundary ∂D of the continuation region D the reward function g has a smooth fit with the optimal expected reward function g*, in the sense that
$$\begin{gathered} g = {g^*}on{\text{ }}\partial D \hfill \\ \nabla g = \nabla g*on{\text{ }}\partial D \hfill \\ \end{gathered} $$
Thus this principle gives the crucial link between optimal stopping and free boundary problems.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. A. Bather: Optimal stopping problems for brownian motion. Advances in Appl. Prob. 2 (1970), 259–286.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    A. Bensoussan & J. L. Lions: Applications of Variational Inequalities in Stochastic Control. North-Holland 1982.Google Scholar
  3. [3]
    E. B. Dynkin: Markov Processes, Vol. I. Springer-Verlag 1965.Google Scholar
  4. [4]
    E. B. Dynkin: Markov Processes, Vol. II. Springer-Verlag 1965.Google Scholar
  5. [5]
    E. B. Dynkin & R. J. Vanderbei: Stochastic waves. Transactions Amer. Math. Soc. 275 (1983), 771–779.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    A. Friedman: Stochastic Differential Equations and Applications, Vol. II. Academic Press 1976.Google Scholar
  7. [7]
    H. P. McKean: A free boundary problem for the heat equation arising from a problem of mathematical economics. Industrial managem. review 6 (1965), 32–39.MathSciNetGoogle Scholar
  8. [8]
    R. C. Merton: The theory of rational option pricing. Bell J. of Economic & Management Science 4 (Spring) (1973), 141–183.MathSciNetCrossRefGoogle Scholar
  9. [9]
    C. Miranda: Partial Differential Equations of Elliptic Type. (2. ed.) Springer-Verlag 1970.Google Scholar
  10. [10]
    B. Øksendal: Stochastic Differential Equations (2. ed.) Springer-Verlag 1989.Google Scholar
  11. [11]
    P. A. Samuelson: Rational theory of warrant pricing. Industrial managem. review 6 (1965), 13–32.Google Scholar
  12. [12]
    A. N. Shiryaev: Optimal Stopping Rules. Springer-Verlag 1978.Google Scholar
  13. [13]
    P. Van Moerbeke: An optimal stopping problem with linear reward. Acta Mathematica 132 (1974), 111–151.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Bernt Øksendal
    • 1
  1. 1.Dept. of MathematicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations