Skip to main content

A Probabilistic Proof of the Boundary Harnack Principle

  • Chapter
Seminar on Stochastic Processes, 1989

Part of the book series: Progress in Probability ((PRPR,volume 18))

Abstract

The boundary Harnack principle may be stated as follows (cf. Jerison and Kenig (1982a), Theorem 5.25).

Research partially supported by NSF grants DMS 8701073 and DMS 8901255.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.T. Barlow and R.F. Bass, The construction of Brownian motion on the Sierpiński carpet, Ann. de l’I. H. Poincaré (1989). (to appear)

    Google Scholar 

  2. R.F. Bass and K. Burdzy, The boundary Harnack principle for Hölder domains. (in preparation)

    Google Scholar 

  3. L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of non-negative solutions of elliptic operarors in divergence form, Indiana Univ. Math. J. 30 (1981), 621–640.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Dahlberg, Estimates of harmonic measure, Arch. Rat. Mech. Anal. 65 (1977), 275–288.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.L. Doob, “Classical Potential Theory and Its Probabilistic Counterpart,” Springer, New York, 1984.

    Book  MATH  Google Scholar 

  6. R. Durrett, “Brownian Motion and Martingales in Analysis,” Wadsworth, Belmont CA, 1984.

    MATH  Google Scholar 

  7. E. Fabes, N. Garofalo, S. Marin-Malave, and S. Salsa, Fatou theorems for some nonlinear elliptic equations. (preprint)

    Google Scholar 

  8. E. Fabes, N. Garofalo and S. Salsa, A backward Harnack inequality and Fatou theorem for non-negative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536–565.

    MathSciNet  MATH  Google Scholar 

  9. R.R. Hunt and R.L. Wheeden, Positive harmonic functions on Lips-chitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527.

    Article  MathSciNet  MATH  Google Scholar 

  10. D.S. Jerison and C.E. Kenig, Boundary value problems on Lipschitz domains, in: Studies in Partial Differential Equations, ed. W. Littman, Washington, D.C.: Math. Assoc. Amer. (1982a).

    Google Scholar 

  11. D.S. Jerison and C.E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math. 46 (1982b), 80–147.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.-M.G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier Grenoble 28 (1978), 147–167.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Bass, R.F., Burdzy, K. (1990). A Probabilistic Proof of the Boundary Harnack Principle. In: Çinlar, E., Chung, K.L., Getoor, R.K., Fitzsimmons, P.J., Williams, R.J. (eds) Seminar on Stochastic Processes, 1989. Progress in Probability, vol 18. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3458-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3458-6_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3457-5

  • Online ISBN: 978-1-4612-3458-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics