Skip to main content

Biphasic and Quasilinear Viscoelastic Theories for Hydrated Soft Tissues

  • Conference paper
Biomechanics of Diarthrodial Joints

Abstract

The major connective tissues of the musculoskeletal system include tendons, ligaments, articular cartilage, meniscus and intervertebral disc. Their main purpose is to connect the muscles and bones of the body together forming joints of various shapes and sizes (the anatomy of joint surfaces and its influence on joint motion are covered by other chapters in these volumes), thereby enabling the wide ranges of motion required by the body during daily activities. These connective tissues are strong enough to transmit large loads from one bone to another or from muscles to bones. In addition, they provide structural stability for the musculoskeletal system and constrain the motion of joints when required. Under normal conditions they are able to maintain these properties with little or no damage or change. In this chapter, we present a brief account of three of these tissues: articular cartilage, meniscus and intervertebral disc. Descriptions of joint motion and other tissues, such as bone, tendons and ligaments, may be found in other chapters of these volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams ME, Muir H: The glycosajninoglycans of canine meniscus. Biochem J 1981;197:385–389.

    Google Scholar 

  • Adams P, Eyre DR, Muir H: Biochemical aspects of development and aging of human intervertebral discs. Rheum Rehab 1977;16:22–29.

    Google Scholar 

  • Akizuki S, Mow VC, Müller F, Pita JC, Howell DS, Manicourt DH: Tensile properties of knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res 1986;4:379–392.

    Google Scholar 

  • Akizuki S, Mow VC, Müller F, Pita JC, Howell DS: Tensile properties of knee joint cartilage: II. Correlations between weight bearing and tissue pathology and the kinetics of swelling. J Orthop Res 1987;5:173–186.

    Google Scholar 

  • Anderson G, Schultz A: Effects of fluid injection on mechanical properties of intervertebral discs. J Biomech 1979;12:453–458.

    Google Scholar 

  • Armstrong CG, Mow VC: Biomechanics of normal and osteoarthrotic articular cartilage. In Wilson PD Jr, Straub LR (eds): Cilinical Trends in Orthopaedics. Thiem-Stratton Inc, 1982a, pp 189–197.

    Google Scholar 

  • Armstrong CG, Mow VC: Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg 1982b;64A:88–94.

    Google Scholar 

  • Armstrong CG, Mow VC, Lai WM: An analysis of unconfined compression of articular cartilage. J Biomech Engng 1984;106:165–173.

    Google Scholar 

  • Askew MJ, Mow VC: The biomechanical function of the collagen ultrastructure of articular cartilage. J Biomech Eng 1978;100:105–115.

    Google Scholar 

  • Aspden RM, Yarker YE, Hukins DWL: Collagen orientations in the meniscus of the knee joint. J Anat 1985;140:371–381.

    Google Scholar 

  • Bar E: Elasticiatssprufunger der gelenkknorpel. Arch Entwickklungsmech Organ 1926;108:739–760.

    Google Scholar 

  • Benninghoff A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion: Zweiter Teil. Der Aufbau des Gelenkknorpels in Seinen Bezienhungen zur Funktion. Z Zellforsch Mikrosk Anat 1925;2:783–862.

    Google Scholar 

  • Berthet C, Hulmes DJS, Miller A, Timmins PA: Structure of collagen in cartilage of IVD. Science 1978;199(4328):547–549.

    Google Scholar 

  • Best BA, Setton LA, Guilak F, Ratcliffe A, Weidenbaurm M, Mow VC: Permeability and compressive stiffness of annulus fibrosus: variation with site and composition. Tran Orthop Res Soc 1989; 14:354.

    Google Scholar 

  • Biot MA: General theory of three-dimensional consolidation. J App Phys 1941; 12:155–164.

    Google Scholar 

  • Biot MA: Theory of elasticity and consolidation for a porous anisotropic solid. J App Phys 1955;26:182–185.

    MathSciNet  MATH  Google Scholar 

  • Bowen RM: Incompressible porous media models by use of the theory of mixtures. Int J Eng Sei 1980;18:1129–1148.

    MATH  Google Scholar 

  • Brown TD, Radin EL, Martin RB, Burr DB: Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech 1984;17:11–24.

    Google Scholar 

  • Brown TD, Singerman RJ: Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis. J Biomech 1986;19:597–605.

    Google Scholar 

  • Bruckner P, Vaughan L, Winthalter KH: Type IX collagen from sternal cartilage of chicken embryo contains covalently bound glycosaminoglycans. Proc Natl Acad Sei USA, 1985;82:2608–2615.

    Google Scholar 

  • Buckwalter JA, Pedrini-Mille A, Pedrini V, Tudisco C: Proteoglycans of human infant intervertebral disc: Electron microscopic and biochemical studies. J Bone Joint Surg 1985;67A:284–294.

    Google Scholar 

  • Buckwalter JA, Rosenberg LC: Electron microscopic studies of cartilage proteoglycans: Direct evidence for the variable length of the chondroitin sulfate rich region of the proteoglycan subunit core protein. J Biol Chem 1982; 257:9830–9839.

    Google Scholar 

  • Buckwalter JA: The fine structure of human intervertebral disc, in White AA, III, Gordon, SL (eds): Symposium on Idiopathic Low Back Pain. Am Acad Orthop Surg 1982, pp 108–143.

    Google Scholar 

  • Buckwalter JA, Hunziker E, Rosenberg LC, Coutts R, Adams M, Eyre D: Articular Cartilage: Composition and Structure. In Woo SLY, Buckwalter JA (eds): Injury and Repair of the Musculoskeletal Soft Tissues. Am Acad Orthop Surg 1987, pp 405–425.

    Google Scholar 

  • Bullough P, Goodfellow J: The significance of the fine structure of articular cartilage. J. Bone Joint Surg, 1968;50B:852–857.

    Google Scholar 

  • Bullough PG, Munuera L, Murphy J, Weinstein AM: The strength of the menisci ofthe knee as it relates to their fine structure. J Bone Joint Surg 1970;52B:564–570.

    Google Scholar 

  • Carney SL, Billingham MEJ, Muir H, Sandy JD: Structure of newly synthesized 35S- proteoglycans and 35S-proteoglycan turnover products of cartilage explant cultures from dogs with experimental osteoarthritis. J Orthop Res 1985;3:140–147.

    Google Scholar 

  • Choi HU, Tang L-H, Johnson TL, Rosenberg L: Proteoglycans from bovine nasal and articular cartilages. Fractionation of the link proteins by wheat germ agglutinin affinity chromatography. J Biol Chem 1985;260:13370–13376.

    Google Scholar 

  • Clark JM: The organization of collagen in cryofractured rabbit articular cartilage: A scanning electron microscopic study. J Orthop Res 1985;3:17–29.

    Google Scholar 

  • Clarke IC: Articular cartilage: a review and electron microsope study. J Bone Joint Surg 1971;53B:732–750.

    Google Scholar 

  • Colleti JM, Akeson WH, Woo SLY: A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface. J Bone Joint Surg 1972; 54A:147–160.

    Google Scholar 

  • Donnan FG: The theory of membrane equilibria. Chem Rev 1924;1:73–90.

    Google Scholar 

  • Edmond E, Ogston AG: An approach to the study of phase separation in ternary aqueous systems. Biochem J 1968;109:569–576.

    Google Scholar 

  • Edwards J: Physical characteristics of articular cartilage. Proc Inst Mech Engng, London 1967;181:16–24.

    Google Scholar 

  • Eisenberg SR, Grodzinsky AJ: Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J Orthop Res 1985;3:148–159.

    Google Scholar 

  • Elmore SM, Sokoloff L, Norris G, Carmeci P: Nature of “imperfect” elasticity of articular cartilage. J App Physiol 1963;18:393–396.

    Google Scholar 

  • Eyre DR: Biochemistry of the intervertebral disc. Int Rev Connect Tiss Res 1979;8:227–291.

    Google Scholar 

  • Eyre DR: Collagen: Molecular diversity in the body’s protein scaffold. Science, 207:1315–1322,1980.

    Google Scholar 

  • Eyre DR, Grynpas MD, Shapiro FD, Creasman CM: Crosslink formation and molecular packing in articular cartilage collagen. Semin Arth Rheum 1981;11 Supp:46–48.

    Google Scholar 

  • Eyre DR, Koob TJ, Van Ness KP: Quantitation of hydroxypyridinium cross-links in collagen by high-performance liquid chromatography. Anal Biochem 1984;137:380–388.

    Google Scholar 

  • Eyre D, Apon S, Wu J-J, Ericsson LH, Walsh KA: Collagen Type DC: Evidence for covalent linkages to Type II Collagen in Cartilage. FEBS Letters, 1987a;320:337–341.

    Google Scholar 

  • Eyre D, and Wu, J-J: Type IX of Ia2a3a Collagen. In Maine R, Burgeson RE (eds): Structure and Function of Collagen Types. Academic Press, 1987b.

    Google Scholar 

  • Ferry JD: Viscoelastic Properties of Polymers. 2nd ed. New York, John Wiley & Sons Inc, 1970.

    Google Scholar 

  • Frisen M, Magi M, Sonnerup L, Viidik A: Rheological analysis of soft collagenous tissue. Part II. J Biomech 1969;2:13–20.

    Google Scholar 

  • Fung, YC: Foundations of Solid Mechanics. Englewood Cliff, NJ, Prentice-Hall, 1965.

    Google Scholar 

  • Fung YC: Biomechanics: Its Foundation and Objectives. In Fung YC, Perrone N, M Anliker (eds): Englewood Cliff, NJ, Prentice-Hall, 1972.

    Google Scholar 

  • Fung YC: Quasi-linear viscoelasticity of soft tissues. In Mechanical Properties of Living Tissues. New York, Springer-Verlag, 1981, pp 226–238.

    Google Scholar 

  • Fithian DC, Kelly MA, Mow VC: Material properties and structure-function relationships in the menisci. Clin Orthop Rel Res 1990;252:19–31.

    Google Scholar 

  • Galante J: Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand 1967;100:7–91.

    Google Scholar 

  • Ghosh P: The Biology of the Intervertebral Disc. Vols. I-H Boca Raton, CRC Press Inc.,1988.

    Google Scholar 

  • Gocke E: Elastizitats studien am junger und alten gelenkknorpel. Verh Deutsch Orthop Ges 1927;22:130–147.

    Google Scholar 

  • Hardingham TE, Muir H.: The specific interaction of hyaluronic acid with cartilage proteoglycans. Biochim Biophys Acta, 1972;279:401–405.

    Google Scholar 

  • Hardingham TE, Muir H: Hyaluronic acid in cartilage and proteoglycan aggregation. Biochem J 1974;139:565–581.

    Google Scholar 

  • Hardingham TE: The role of link protein in the structure of cartilage proteoglycan aggregates. Biochem J 1979;177:237–247.

    Google Scholar 

  • Hardingham TE. Proteoglycans: Their structure, interactions and molecular organization in cartilage. Biochem Soc Trans 1981;489–497.

    Google Scholar 

  • Hardingham TE, Muir H, Kwan MK, Lai WM, Mow VC: Viscoelastic properties of proteoglycan solutions with varying proportions present as aggregates. J Orthop Res 1987;5:36–46.

    Google Scholar 

  • Hascall VC, Heinegard D: Aggregation of cartilage proteoglycans I. The role of hyaluronic acid. J Biol Chem 1974a;249:4232–4241.

    Google Scholar 

  • Hascall VC, Heinegard D: Aggregation of cartilage proteoglycans II. Oligosaccharide competitors of the proteoglycan-hyaluronic acid interaction. J Biol Chem 1974b;249:4242–4249.

    Google Scholar 

  • Hascall VC: Interactions of cartilage proteoglycans with hyaluronic acid. J Supramol Struct 1977;7:101–120.

    Google Scholar 

  • Hascall VC, Hascall GK: Proteoglycans. In Hay ED (ed): Cell Biology of Extracellular Matrix. Plenum Press, New York, 1981, pp 39–63.

    Google Scholar 

  • Haut RC, Little RW: A constitutive equation for collagen fibers. J Biomech 1972;5:423–430.

    Google Scholar 

  • Hayes WC, Mockros LF: Viscoelastic properties of human articular cartilage. J Appl Physiol 1971;31:562–568.

    Google Scholar 

  • Hayes WC, Keer LM, Herrmann G, Mockros LF: A mathematical analysis for the indentation tests of articular cartilage. J Biomech 1972;11:407–419.

    Google Scholar 

  • Hayes WC, Bodine AJ: Flow-independent viscoelastic properties of articular cartilage matrix. J Biomech 1978;11:407–419.

    Google Scholar 

  • Heinegard D, Paulsson M, Inerot S, Carlstrom C: A novel, low molecular weight chondroitin sulfate proteoglycan isolated from cartilage. J BiochemJ 1981;197:355–366.

    Google Scholar 

  • Hewitt AT, Varner HH, Silver MH: The role of chondronectin and cartilage proteoglycan in the attachment of chondrocytes to collagen. In Kelly RO, Goetinck PF, MacCabe JA (eds): Limb Development and Regeneration, Part B. Raven Press, 1982, pp 25–33.

    Google Scholar 

  • Hickey DS, Hukins DWL: Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine 1980;5:106–116.

    Google Scholar 

  • Higginson GR, Snaith JE: The mechanical stiffness of articular cartilage in confined oscillating compression. I Mech E 1979;8:11–14.

    Google Scholar 

  • Hirsch C: The pathogenesis of chondromalacia of the patella. Acta Chir Scand 1944;83Supp: 1–106.

    Google Scholar 

  • Hock DH, Grodzinsky AJ, Koob TJ, Albert ML, Eyre DR: Early changes in material properties of rabbit articular cartilage after meniscectomy. J Orthop Res 1983;1:4–12.

    Google Scholar 

  • Holmes MH: A nonlinear diffusion equation arising in the study of soft tissue. Quart Appl Math 1983;61:209–220.

    Google Scholar 

  • Holmes MH, Lai WM, Mow VC: Singular perturbation analysis of the nonlinear flow dependent compressive stress relaxation behavior of articular cartilage. J Biomech Eng 1985;107:206–218.

    Google Scholar 

  • Holmes MH: Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. J Biomech Eng 1986;108:372–381.

    Google Scholar 

  • Hori RY, Mockros LF: Indentation tests of human articular cartilage. J Biomech 1976;9:259–268.

    Google Scholar 

  • Hultkrantz W: Ueber die spaltrichtungen der gelenknorpel. Verh Dsch Anat Ges 1898;12:248.

    Google Scholar 

  • Hunziker EB, Schenk RK: Structural organization of proteoglycans in cartilage. In Wight TW, Mecham RP (eds): Biology of Proteoglycans, Academic Press, 1987, pp 155–183.

    Google Scholar 

  • Jurvelin J, Kiviranta I, Aronkoski J, Tammi M, Helminen HJ: Indentation study of the biomechanical properties of articular cartilage in canine knee. Engng Med 1987;16:16–22.

    Google Scholar 

  • Kempson GE, Muir H, Swanson SAV, Freeman MAR: Correlations between stiffness and chemical constituents of cartilage on the human femoral head. Biochim Biophys Acta 1970;215:70–77.

    Google Scholar 

  • Kempson GE, Muir H, Pollard C, Tuke M: The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta 1973;297:456–472.

    Google Scholar 

  • Kempson GE, Spivey CJ, Swanson SAV, Freeman MAR: Patterns of cartilage stiffness on normal and degenerate femoral heads. J Biomech 1971;4:597–609.

    Google Scholar 

  • Kempson GE: Mechanical properties of articular cartilage, in Freeman MAR (ed): Adult Articular Cartilage, 2nd ed. Pitman Medical, 1979, pp 333–414.

    Google Scholar 

  • Kenyon DE: The theory of an incompressible solid-fluid mixture. Arch Rat Mech Anal 1976;62:131–147.

    MathSciNet  MATH  Google Scholar 

  • Kenyon DE: A model for surface flow in cartilage. J Biomech 1980;13:129–134.

    Google Scholar 

  • Kwan MK, Woo SLY, Amiel D, Kleiner JB, Field FP, Coutts RD: Neocartilage generated from rib perchondrium: A long term multi-disciplinary evaluation. Tran Orthop Res Soc 1987;12:277.

    Google Scholar 

  • Kwan MK, Wayne JS, Woo SLY, Field FP, Hoover J, Meyers M: Histological and biomechanical assessment of articular cartilage from stored osteochondral shell allografts. J Orthop Res 1989;7:637–644.

    Google Scholar 

  • Kwan MK, Lai WM, Mow VC: A finite deformation theory for cartilage and other soft hydrated connective tissues — I. Equilibrium results, J Biomech 1990;23:145–156.

    Google Scholar 

  • Lai WM, Mow VC: Drag-induced compression of articular cartilage during a permeation experiment. Biorheol 1980;17:111–123.

    Google Scholar 

  • Lai WM, Hou JS, Mow VC: A triphasic theory for articular cartilage swelling, Proc Biomech Symp ASME, 1989;AMD98:33–36.

    Google Scholar 

  • Lai WM, Hou JS, Mow VC: A triphasic theory for the swelling and deformational behavior of cartilage, J Biomech Eng In Press, 1990.

    Google Scholar 

  • Lane JM, Weiss C: Review of articular cartilage collagen research, Arth Rheum 1975;18:553–562.

    Google Scholar 

  • Lee RC, Frank EH, Grodzinsky AJ, Roylance DK: Oscillatory compressional behavior of articular cartilage and its electromechanical properties. J Biomech Eng 1981;103:280–292.

    Google Scholar 

  • Li JT, Armstrong CG, Mow VC: The effect of strain rate on mechanical properties of articular cartilage in tension. Biomech Symp ASME, 1983; AMD56:117–120.

    Google Scholar 

  • Linn FC, Sokoloff L: Movement and composition of interstitial fluid of cartilage. Arth Rheum 1965;8:481–494.

    Google Scholar 

  • Lipshitz H, Etheredge R, Glimcher MJ: Changes in the Hexosamine Content and Swelling Ratio of Articular Cartilage as Functions of Depth from the Surface. J Bone Joint Surg 1976;58A:1149–1153.

    Google Scholar 

  • Mak AF: The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitital fluid flow. J Biomech Eng 1986;108:123–130.

    Google Scholar 

  • Mak AF, Lai WM, Mow VC: Biphasic Indentation of Articular Cartilage: I. Theoretical Analysis. J Biomech 1987;20:703–714.

    Google Scholar 

  • Mankin HJ, Thrasher AZ: Water content and binding in normal and osteoarthritic cartilage, J Bone Joint Surg 1975;57A:76–80.

    Google Scholar 

  • Manicourt DH, Pita JC, McDevitt CA, Howell DS: Superficial and deeper layers of dog normal articular cartilage: Role of hyaluronate and link protein in determining the sedimentation coefficients distribution of the non-dissociately extracted proteoglycans. J Biol Chem 1988;263:13121–13129.

    Google Scholar 

  • Mansour JM, Mow VC: The permeability of articular cartilage under compressive strain and at high pressures. J Bone Joint Surg 1976;58A:509–516.

    Google Scholar 

  • Maroudas A: Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheol 1975;12:233–248.

    Google Scholar 

  • Maroudas A: Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 1976;260:808–809.

    Google Scholar 

  • Maroudas A: Physicochemical properties of articular cartilage, in Freeman AR (ed): Adult Articular Cartilage. Turnbridge Wells, England, Pitman Medical, 1979, pp 215–290.

    Google Scholar 

  • Maroudas A, Venn M: Chemical composition and swelling of normal and osteoarthritic femoral head cartilage. II: Swelling. Ann Rheum Dis 1977;36:399–406.

    Google Scholar 

  • Maroudas A, Bayliss MT, Venn MF. Further studies on the composition of human femoral head cartilage. Ann Rheum Dis 1980;39:514–523.

    Google Scholar 

  • Maroudas A, Schneidermann R: “Free” and “exchangeable” or “trapped” and “non- exchangeable” water in cartilage. J Orthop Res 1987;5:133–138.

    Google Scholar 

  • Mayne R, Irwin MH: Collagen types in cartilage, in Kuettner, KE, Schleyerbachand R, Hascall VC (eds): Articular Cartilage Biochemistry. Raven Press, New York, 1986, pp 23–38.

    Google Scholar 

  • McDevitt CA, Muir H: Biochemical changes in the cartilage of the knee in experimental and natural osteoarthritis in the dog. J Bone Joint Surg 1976; 58B:94–101.

    Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG: Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J Biomech Eng 1980;102:73–84.

    Google Scholar 

  • Mow VC, Lai WM, Holmes MH: Advanced theoretical and experimental techniques in cartilage research, in Huiskes R, van Campen DH, de Wijn JR (eds): Biomechanics: Principals and Applications. The Hague, Martinus Nijhoff Publishers, 1982, pp 47–74.

    Google Scholar 

  • Mow VC, Holmes MH, Lai WM: Fluid transport and mechanical properties of articular cartilage. J Biomech 1984a;17:377–394.

    Google Scholar 

  • Mow VC, Mak AF, Lai WM, Rosenberg LC, Tang LH: Viscoelastic properties of proteoglycan subunits and aggregates in varying solution concentrations. J Biomech 1984b;17:325–338.

    Google Scholar 

  • Mow VC, Kwan MK, Lai WM, Holmes MH: A finite deformation theory for nonlinearly permeable soft hydrated biological tissues, in Schmid-Schonbein GW, Woo SLY, Zweifach BW (eds): Frontiers in Biomechanics, New York, Springer Verlag, 1986, pp 153–179.

    Google Scholar 

  • Mow VC, Zhu WB, Lai WM, Hardingham TE, Hughes C, Muir H: Link protein effects on proteoglycan viscometric flow properties. Biochem Biophys Acta 1989a;l12:201–208.

    Google Scholar 

  • Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA: Biphasic indentation of articular cartilage — Part II. A numerical algorithm and an experimental study. J Biomech 1989b;22:853–861.

    Google Scholar 

  • Muir H, Bullough P, Maroudas A: The distribution of collagen in human articular cartilage with some of its physiologic implications. J Bone Joint Surg 1970;52B:554–563.

    Google Scholar 

  • Muir H: The chemistry of the ground substance of joint cartilage, in Sokolff, L (ed): The Joints and Synovial Fluid. Vol. II. Academic Press, 1980, pp 27–94.

    Google Scholar 

  • Muir H: Proteoglycans as organizers of the extracellular matrix. Biochem Soc Trans 1983;11:613–622.

    Google Scholar 

  • Muthiah P, Kuhn K: Studies on proteoglycans obtained from bovine knee joint and ear cartilages: sequential extraction, fractionation, characterization and their effect on fibril formation. Biochim Biophys Acta 1973;304:12–19.

    Google Scholar 

  • Myers ER, Armstrong CG, Mow VC: Swelling pressure and collagen tension, in Hukins DWL (ed): Connective Tissue Matrix. MacMillan Press Ltd, 1984, pp 161–168.

    Google Scholar 

  • Myers ER, Lai WM, Mow VC: A continuum theory and an experiment for the ion- induced swelling behavior of articular cartilage. J Bioniech Eng 1984b; 106:151–158.

    Google Scholar 

  • Myers ER, Zhu W, Mow VC: Viscoelastic properties of articular cartilage and meniscus, in Nimni ME (ed): Collagen, Vol II. CRC Press, 1988, pp 267–288.

    Google Scholar 

  • Nimni ME: Collagen: Structure, Function, and Metabolism in Normal and Fibrotic Tissues. Sem Arth Rheum 1983;13:1–86.

    Google Scholar 

  • Nimni ME, Harkness RD: Molecular structure and functions of collagen, in Nimni ME (ed): Collagen, Vol I. CRC Press, 1988, pp 1–78.

    Google Scholar 

  • Obrink B: A study of the interactions between monomeric tropocollagen and glycosaminoglycans. Eur J Biochem 1973;33:387–400.

    Google Scholar 

  • Panagiotacopulos N, Krauss H, Bloch R: On the mechanical properties of human intervertebral disc material. Biorheol 1979;16:317–330.

    Google Scholar 

  • Parsons JR, Black JD: The viscoelastic shear behavior of normal rabbit articular cartilage. J Biomech 1977;10:21–29.

    Google Scholar 

  • Parsons JR, Black JD: Mechanical behavior of articular cartilage: quantitative changes with alteration of ionic environment. J Biomech 1979;12:765–773.

    Google Scholar 

  • Poole AR, Pidous I, Reiner A, Rosenberg LC: An immunoelectron microscope study of the organization of proteoglycan monomer link protein and collagen in the matrix of articular cartilage. J Cell Biol 1982;93:921–937.

    Google Scholar 

  • Poole CA, Flint MH, Beaumont BW: Morphological and functional interrelationships of articular cartilage matrices. J Anat 1984;138:113–138.

    Google Scholar 

  • Pottenger LA, Lyon NB, Hecht JD, Neustadt PM, Robinson RA: Influence of cartilage particle size and proteoglycan aggregation on immobilization of proteoglycans. J Biol Chem 1982;257:11479–11485.

    Google Scholar 

  • Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC: Material properties of normal bovine meniscus. J Orthop Res 1989;7:771–782.

    Google Scholar 

  • Ratcliffe A, Fryer PR, Hardingham TE: The distribution of aggregating proteoglycans in articular cartilage: Comparison of quantitative immunoelectron microscopy with radioimmunoassay and biochemical analysis. J Histochem Cytochem 1984;32:193–201.

    Google Scholar 

  • Ratcliffe A, Tyler JA, Hardingham TE: Articular cartilage cultured with interleukin 1: increased release of link protein, hyaluronate-binding region, and other proteoglycan fragments. Biochem J 1986;238:571–580.

    Google Scholar 

  • Rees DA: Sterochemistry and binding behaviour of carbohydrate chains, in Whelan WJ (ed): MTP International Rerview of Science. BiochemistrySeries I, ed.Butterworth & Co Ltd, London, 1975, 5:1–42.

    Google Scholar 

  • Redler I, Zimny ML: Scanning electron microscopy of normal and abnormal articular cartilage. J Bone Joint Surg 1970;52A: 1395–1404.

    Google Scholar 

  • Redler I, Zimny ML, Mansell J, Mow VC: The Ultrastructure and Biomechanical Significance of the Tidemark of Articular Cartilage. Clin Orthop Rel Res 1975;112:357–362.

    Google Scholar 

  • Roth V, Mow VC, Lai WM, Eyre DR: Correlation of intrinsic compressive propertiesof bovine articular cartilage with its uronic acid and water contents. Trans Orthop Res Soc 1981;6:49.

    Google Scholar 

  • Roth V, Mow VC: The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Joint Surg 1980;62A: 1102–1117.

    Google Scholar 

  • Ruggeri A, Benazzo F: Collagen-proteoglycan interaction, in Ruggeri A, Motta PM (eds): Ultrastructure of Connective Tissue Matrix. Boston, Martinus Nijhoff Publishers, 1984, pp 113–125.

    Google Scholar 

  • Sah RLY, Kim Y, Doong JY, Grodzinsky AJ, Plass AHK, Sandy JD: Biosyn-thetic response of cartilage explants to dynamic compression. J Orthop Res 1989;7:619–636.

    Google Scholar 

  • Sampaio L de O, Bayliss MT, Hardingham TE, Muir H: Dermatan sulfate proteoglycan from human articular cartilage. Variation in its content with age and its structural comparison with a small chondroitin sulfate proteoglycan from pig laryngeal cartilage. Biochem J 1988;254:757–764.

    Google Scholar 

  • Schmidt MB, Schoonbeck JM, Mow VC, Eyre DR, Chun LE: Effects of enzymatic extraction of proteoglycans on the tensile properties of articular cartilage. Trans Orthop Res Soc 1986;11:450.

    Google Scholar 

  • Schmidt MB, Schoonbeck JM, Mow VC, Eyre DR, Chun, LE: The relationship between collagen cross-linking and the tensile properties of articular cartilage. Trans Orthop Res Soc 1987;12:134.

    Google Scholar 

  • Schmidt MB, Mow VC, Chun LE, Eyre DR: Effects of enzymatic extraction of proteoglycans on the tensile properties of articular cartilage. J Orthop Res 1990;8:353–363.

    Google Scholar 

  • Scott JE: Proteoglycan-fibrillar collagen interactions. Biochem J 1988;252:313–323.

    Google Scholar 

  • Shirazi-Adl A, Ahmed AM, Shrivastava SC: A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech 1986; 19:331–350.

    Google Scholar 

  • Simon BR, Gaballa MA: Poroelastic finite element models for the spinal motion segment including ionic swelling. In Spilker RL, Simon BR (eds): Computational Methods in Bioengineering, New York, ASME Publishers, 1988;93–99.

    Google Scholar 

  • Sokoloff L: Elasticity of articular cartilage: effect of ions and viscous solutions. Science 1963;141:1055–1056.

    Google Scholar 

  • Spilker RL, Jakobs DM, Schultz AB: Material constants for a finite element model ofthe intervertebral disc with a fiber composite annulus, J Biomech Engng, 1986;108:1–11.

    Google Scholar 

  • Spilker RL, Suh JK, Mow VC: A finite element formulation of the nonlinear biphasic model for articular cartilage and* hydrated soft tissues including strain-dependent permeability. In RL Spilker, BR Simon (eds). Computational Methods in Bioengineering, New York, ASME Publishers, 1988, pp 81–92.

    Google Scholar 

  • Sprit AA, Mak AF, Wassell RP: Nonlinear viscoelastic properties of articular cartilage in shear. J Orthop Res 1989;7:43–49.

    Google Scholar 

  • Stockwell RA: The interrelationship of cell density and cartilage thickness in mammalian articular cartilage, J Anat 1971;109:411–421.

    Google Scholar 

  • Stockwell RA: Structure and function of the chondrocyte under mechanical stress. In Helminen HJ et al. (eds): Loading, Biology and Health of Articular Structures. Bristol:Wright Publishers, 1987, Chapter 6.

    Google Scholar 

  • Toole B: Binding and precipitation of soluble collagens by chick embryo cartilage proteoglycans. J Biol Chem 1976;251:895–897.

    Google Scholar 

  • Torzilli PA: Influence of cartilage conformation on its equilibrium water partition. J Orthop Res 1985;3:473–483.

    Google Scholar 

  • Torzilli PA: Water content and equilibrium partition in immature cartilage, J Orthop Res 1988;6:766–769.

    Google Scholar 

  • Truesdell C, Toupin R: The Classical Field Theories, Handbuck der Physik, Berlin, Springer-Verlag, 1960, ID/1.

    Google Scholar 

  • Truesdell C, Noll W: The Nonlinear Field Theories of Mechanics, Handbuck der Physik, Berlin, Springer-Verlag, 1965,111/3.

    Google Scholar 

  • Urban JPG, Maroudas A: Swelling of the intervertebral disc in vitro. Connect Tiss Res 1981;9:1–10.

    Google Scholar 

  • Van der Rest M, Mayne R: Type IX Collagen Proteoglycan from Cartilage is Covalently Cross-linked to Type II Collagen. J Biol Chem 1988;263:1615–161.

    Google Scholar 

  • von der Mark K, Mollenhauer J, Pfaffle M, van Menxel M, Mllller, PK: Role of anchorin CII in the interaction of chondrocytes with extracellular collagen, in Kuettner KE, Schleyerbach R, Hascall VC (eds): Articular Cartilage Biochemistry. Raven Press, 1986, pp 125–141.

    Google Scholar 

  • Weidemann H, Paulsonn M, Timpl R, Engel J, Heinegard D: Domain structure of cartilage proteoglycans revealed by rotary shadowing of intact and fragmented molecules. Biochem J 1984;224:331–333.

    Google Scholar 

  • Woo SLY, Akeson WH, Jemmott GF: Measurements of nonhomogeneous directional mechanical properties of articular cartilage in tension. J Biomech 1976;9:785–791.

    Google Scholar 

  • Woo SLY, Lai WM, Mow VC: Biomechanical Properties of Articular Cartilage, in Skalak R, Chien S (eds): Handbook of Bioengineering. New York, McGraw Hill Publishers, 1986, Chapter 4.

    Google Scholar 

  • Woo SLY, Gomez MA, Akeson WH: The time and history-dependent viscoelastic properties of the canine medial collateral ligament. J Biomech Eng 1981;103:293.

    Google Scholar 

  • Wood GC, Keech MK: The formation of fibrils from collagen solution. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem J 1960;75:588–598.

    Google Scholar 

  • Yamauchi M, Mechanic G: Cross-linking of collagen, in Nimni ME (ed): Collagen: Biochemistry. CRC Press, Boca Raton, FL, 1988, pp 157–172.

    Google Scholar 

  • Zhu WB, Lai WM, Mow VC: Intrinsic quasi-linear viscoelastic behavior of the extracellular matrix of cartilage. Trans Orthop Res Soc 1986;11:407.

    Google Scholar 

  • Zhu WB: Nonlinear viscoelastic behavior of concentrated proteoglycan solutions, and articular cartilage in shear, PhD Thesis, Rensselaer Polytechnic Institute, 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Mow, V.C., Hou, J.S., Owens, J.M., Ratcliffe, A. (1990). Biphasic and Quasilinear Viscoelastic Theories for Hydrated Soft Tissues. In: Ratcliffe, A., Woo, S.LY., Mow, V.C. (eds) Biomechanics of Diarthrodial Joints. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3448-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3448-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8015-6

  • Online ISBN: 978-1-4612-3448-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics