Skip to main content

Osmotic and Hydraulic Flows in Proteoglycan Solutions

  • Conference paper
Biomechanics of Diarthrodial Joints
  • 388 Accesses

Abstract

Articular cartilage is an integral component of diarthrodial joints where it functions as the covering of articulating bone surfaces to provide a bearing interface which has both compressive resistance and viscoelasticity. The tissue itself is avascular in which chondrocytes are sparsely distributed in an extracellular matrix which is synthesized by these cells. The physical properties of the cartilage are determined by its extracellular matrix. The matrix is a multicomponent system. Notwithstanding the compositional and topographical heterogeneity of matrix macromolecules, its major components are water with dissolved NaCl and other salts, type II collagen and proteoglycan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bearman RJ: On the molecular basis fo some theories of diffusion. J. Phys. Chem. 1961; 73: 1961–1968.

    Article  Google Scholar 

  • Candau S, B as tide J, Delsanti M: Structural, elastic, and dynamic properties of swollen polymer networks. Adv. Polym. Sci. 1982; 44: 27–71.

    Article  Google Scholar 

  • Carney SL, Muir H: The structure and function of cartilage proteoglycans. Physiol. Rev. 1988; 68: 858–910.

    Google Scholar 

  • Comper WD: Physicochemical aspects of cartilage extracellular matrix, in Hall BK, Newman SA (eds): Cartilage Molecular Aspects, New Hampshire, Telford Press 1990 (in press).

    Google Scholar 

  • Comper WD, Laurent TC: Physiological function of connective tissue polysaccharides. Physiol. Rev. 1978; 58: 255–315.

    Google Scholar 

  • Comper WD, Preston BN, Daivis P: The approach of dextran mutual diffusion coefficients to molecular weight independence in semi dilute solutions of polydisperse dextran fractions. J. Phys. Chem. 1986; 90: 128–132.

    Article  Google Scholar 

  • Comper WD, Van Damme M-P, Preston BN: Diffusion of tritiated water (HTO) in dextran and water mixtures. J. Chem Soc. Faraday Trans. I. 1982; 78: 3369–3378.

    Article  Google Scholar 

  • Comper WD, Williams RPW: Hydrodynamics of concentrated proteoglycan solutions. J. Biol Chem. 1987; 262: 13464–13471.

    Google Scholar 

  • Comper WD, Williams RPW: Osmotic flow caused by chondroitin sulfate proteoglycan across well defined Nuclepore membranes Biophys. Chem. 1990 (in press).

    Google Scholar 

  • Comper WD, Zamparo O: Hydraulic conductivity of polymer matrices. Biophys. Chem. 1989, 34: 127–135.

    Article  Google Scholar 

  • Comper WD, Zamparo O: The hydrodynamic properties of connective tissuepolysaccharides. Biochem. J. 1990 (in press).

    Google Scholar 

  • Dainty J: Osmotic flow. Federation Proc. 1965; 19: 75–85.

    Google Scholar 

  • Eisenberg SR, Grodzinsky AJ: The kinetics of chemically induced nonequilibrium swelling of articular cartilage and corneal stroma. J. Biomech. Eng. 1987; 109:79–89.

    Article  Google Scholar 

  • Eisenberg SR, Grodzinsky AJ: Electrokinetic micromodel of extracellular matrix and other polyelectrolyte networks. PCH Physicochem Hydrodynamics 1988; 10: 517–539.

    Google Scholar 

  • Gersh I, Catchpole HR: The nature of the ground substance of connective tissue. Perspect. Biol. Med. 1960; 3: 282–319.

    Google Scholar 

  • Grodzinsky AJ, Roth V, Myers ER, Grossman W, Mow VC: The significance of electromechanical and osmotic forces on the nonequilibrium swelling behaviour of articular cartilage in tension. J. Biomech. Eng. 1981; 103:221–231.

    Article  Google Scholar 

  • Happel J, Brenner H: Low Reynolds Number Hydrodynamics, Englewood, N.J. Prentice- Hall, 1983.

    Google Scholar 

  • Hascall VC: Interaction of cartilage proteoglycans with hyaluronic acid. J. Supramol. Struct. 1977; 7: 101–120.

    Article  Google Scholar 

  • Hascall VC: Proteoglycans: The chondroitin sulfate/keratan sulfate proteoglycan of cartilage ISI Atlas of Science: Biochemistry 1988: 189–198.Heyer E, Cass A, Mauro A: A demonstration of the effect of permeant and impermeant solutes, and unstirred boundary layers of osmotic flow. Yale J. Biology and Med;. 1969–70 42: 139–153.

    Google Scholar 

  • Kwan MK, Lai MW, Mow VC: Fundamentals of fluid transport through cartilage in compression. Ann. Biomed. Eng. 1984; 12: 537–558.

    Article  Google Scholar 

  • Lai WM, Hou JS, Mow VC: A triphasic theory for the swelling and deformation behaviors of articular cartilage (submitted for publication).

    Google Scholar 

  • Levick JR: Flow through interstitium and other fibrous matrices. Quart. J. Exp. Physiol. 1987; 72: 409–438.

    Google Scholar 

  • Maroudas A: Biophysical chemistry of cartilagenous tissues with special reference to solute and fluid transport. Bioheology 1975; 12: 233–248.

    Google Scholar 

  • Maroudas A: Physical chemistry of articular cartilage and the intervertebral disc in Sokoloff L (ed): The Joints and Synovial Fluid. Vol. II, London, Academic Press, 1980, pp 239–291.

    Google Scholar 

  • Maroudas A, Bannon C: Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Bioheology, 1981; 18: 619–632.

    Google Scholar 

  • Maroudas A, Mizrahi J, Ben Haim E, Ziv I: Swelling pressure in cartilage in Staub NC, Hogg JC, Hargens AR (eds): Interstial-Lymphatic Liquid and Solute Movement (Advances in Microcirculation Vol. 13) Basel, Kargen 1987, pp 203–212.

    Google Scholar 

  • Maroudas A, Venn M: Chemical composition and swelling of normal and osteoarthritic femoral head cartilage. Ann. Rheum Dis. 1977; 36: 399–403.

    Article  Google Scholar 

  • Mijnlieff PF, Jaspers WJM: Solvent permeability of dissolved polymer material. The direct determination from sedimentation measurements. Trans. Faraday Soc. 1971; 67: 1837–1854.

    Article  Google Scholar 

  • Mow VC, Holmes MK, Lai WM: Fluid transport and mechanical properties of articular cartilage. A review J. Biomech. 1984; 17: 377–394.

    Article  Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG: Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. 1980; 102: 73–84.

    Article  Google Scholar 

  • Mow VC, Mak AF, Lai WM, Rosenberg LC, Tang L-H: Viscoelastic properties of proteoglycan subunits and aggregates in varying solution concentrations. J. Biomech. 1984: 17: 325–338.

    Article  Google Scholar 

  • Muir H: Proteoglycans as organisers of the extracellular matrix. Biochem. Soc. Trans 1983; 11: 613–622.

    Google Scholar 

  • Onsager L, Fuoss RM: Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 1932; 36: 2689–2778.

    Article  Google Scholar 

  • Ray P: On the theory of osmotic water movement. Plant Physiol. 1960; 35: 783–797.

    Article  Google Scholar 

  • Soodak H, Iberall A: Osmosis, diffusion, convection, Am. J. Physiol. 1978; 235: R3–R17.

    Google Scholar 

  • Spiegier KS: Transport processes in ionic membranes. Trans Faraday Soc. 1958; 54: 1408–1426.

    Article  Google Scholar 

  • Torchia DA, Hasson MA, Hascall VC: Investigation of molecular motion of proteoglycans in cartilage by 13C magnetic resonance. J. Biol. Chem 1977;252: 3617–3625.

    Google Scholar 

  • Urban JPG, Maroudas A, Bayliss MT, Dillon J: Swelling pressures of proteoglycans at the concentrations found in cartilagenous tissues. Biorheology 1979; 16: 447–464.

    Google Scholar 

  • Williams RPW, Comper WD: Osmotic flow caused by non-ideal macromolecular solutes. J. Phys. Chem. 1987; 91: 3443–3448.

    Article  Google Scholar 

  • Williams RPW. Comper WD: Osmotic flow caused by poly electrolytes. Biophys. Chem. 1990 (in press).

    Google Scholar 

  • Zamparo O, Comper WD: Hydraulic conductivity of chondroitin sulfate proteoglycan solutions. Arch. Biochem. Biophys. 1989; 274: 259–269.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Comper, W.D. (1990). Osmotic and Hydraulic Flows in Proteoglycan Solutions. In: Ratcliffe, A., Woo, S.LY., Mow, V.C. (eds) Biomechanics of Diarthrodial Joints. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3448-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3448-7_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8015-6

  • Online ISBN: 978-1-4612-3448-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics