Skip to main content

Structure and Function of Normal and Healing Tendons and Ligaments

  • Conference paper
Biomechanics of Diarthrodial Joints

Abstract

The structure and function of tendons and ligaments are intimately interrelated. The structural arrangement of these parallel-fibered collagenous tissues is similar to rope-building; from the α chains in the collagen molecule itself up to the level of fibrils the principle is thus helicality that changes handedness on consecutive levels of organization. This arrangement, which is comparable to rope-tightening, renders stability and strength to the tissue - collagen is the strongest protein in the mammalian organism. On higher levels of organization there is “only” planar waviness, which contributes to the properties during the initial part of the stress-strain curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerblom B: Standing and Sitting Posture. Stockholm, Nordiska Bokhandeln, 1948.

    Google Scholar 

  • Akeson WH, Woo SL-Y Maiel D, Matthews JV: Biomechanical and biochemical changes in the periarticular connective tissue during contracture development in the immobilized rabbit knee. Conn Tiss Res 1974;2:315–323.

    Article  Google Scholar 

  • Akeson WH, Amiel D, Mechanic GL, Woo SL-Y, Harwood FL & Hamer ML: Collagen cross-linking alterations in joint contractures: Changes in the reducible cross-links in periarticular connective tissue collagen after nine weeks of immobilization. Conn Tiss Res 1977;5:15–20.

    Article  Google Scholar 

  • Alexander RM: Visco-elastic properties of the body-wall of sea anemones. J exp Biol 1962;39:373–386.

    Google Scholar 

  • Alfrey T, Gurnee EF: Molecular structure and mechanical behaviour of macromolecules, in Remington JW (ed): Tissue Elasticity. Washington, Amer Phys Soc, 1957; 12–32.

    Google Scholar 

  • Arcadi: Quoted from Hansen TM: Cyclophosphamide and Collagen. Copenhagen, Laegeforeningens Forlag, 1979.

    Google Scholar 

  • Bailey AJ, Etherington DJ: Metabolism of collagen and elastin, in Florkin M, Neuberger A (eds): Comprehensive Biochemistry, Vol 19B, Part I, Protein Metabolism. Amsterdam, Elsevier, 1980, pp 299–408.

    Google Scholar 

  • Barenberg SA, Filisko FE Geil PH: Ultrastructural deformation of collagen. Conn Tiss Res 1878;6:25–35.

    Article  Google Scholar 

  • Barfred T: Experimental rupture of the achilles tendon. Acta Orthop Scand 1971a;42:528–543.

    Article  Google Scholar 

  • Barfred T: Kinesiological comments on subcutaneous ruptures of the achilles tendon. Acta Orthop Scand 1971b;42:397–405.

    Article  Google Scholar 

  • Barnes GRG, Pinder DN: In vivo tendon tension and bone strain measurement and correlation. J Biomechanics 1974;7:35–42.

    Article  Google Scholar 

  • Booth FW, Tipton CM: Effects of training and 17-B estradiol upon heart rates, organ weights, and ligamentous strength of female rats. Intern Zschr angew Physiol 1969;27:187–197.

    Google Scholar 

  • Brodsky B, Tamaka S, Eikenberry EF: X-ray diffraction as a tool for studying collagen structure, in Nimni ME (ed): Collagen Vol I Biochemistry. Boca Raton, CRC Press, 1988, pp 95–112.

    Google Scholar 

  • Carlstedt CA: Mechanical and chemical factors in tendon healing. Effects of indomethacin and surgery in the rabbit. Acta Orthop Scand 1987;58:Suppl 224. Clark JM, Sidles JA: The interrelation of fiber bundles in the anterior cruciate ligament. J Orthop Res 1990;8:180–188.

    Article  Google Scholar 

  • Cohen RE, Hooley CJ, McCrum NG: The mechanism of the viscoelastic deformation of collagenous tissue. Nature 1974,247:59–61.

    Article  Google Scholar 

  • Cohen RE, Hooley CJ, McCrum NG: Mechanism of the viscoelastic deformation of collagenous tissue, in Atkins EDT, Keller A (eds): Structure of Fibrous Biopolymers. London, Butterworths, 1975, pp 251–254.

    Google Scholar 

  • Cohen RE, Hooley CJ, McCrum NG: Viscoelastic creep of collagenous tissue. J Biomechanics 1976:9:175–184.

    Article  Google Scholar 

  • Cohen RE, Hooley CJ: A model for creep behaviour of tendon. Int J Biol Macromol 1979;1:123–132.

    Article  Google Scholar 

  • Cowan PM, North ACT, Randall JT: X-ray diffraction studies of collagen fibres. Symp Soc Exp H Biol 1955;9:115–126.

    Google Scholar 

  • Davidsson L: tiber die subkutanen Sehnen-Rupturen und die Regeneration der Sehne. Ann Chir Gynaec Fenniae 1956; Suppl 6.

    Google Scholar 

  • Diamant J, Keller A, Baer E, Litt M, Arridge RGC: Collagen: ultrastructure and its relation to mechanical properties as a function of ageing. Proc Roy Soc Lond B 1972;180:293–315.

    Article  Google Scholar 

  • Elden HR: Physical properties of collagen fibers, in Hall DA (ed): International Review of Connective Tissue Research, Vol 4. New York, Academic Press, 1968, pp 283–348.

    Google Scholar 

  • Elliott DH, Crawford GNC: The thickness and collagen content of tendon relative to the strength and cross-sectional area of muscle. Proc Roy Soc Lond B 1965;162:137–146.

    Article  Google Scholar 

  • Frank C, Woo SL-Y, Amiel D, Harwood F, Gomez M, Akeson W: Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am J Sports Med 1983a; 11:379–389.

    Google Scholar 

  • Frank C, Amiel D, Akeson WH: Healing of the medial collateral ligament of the knee. A morphological and biochemical assessment in rabbits. Acta Orthop Scand 1983b;54:917–923.

    Google Scholar 

  • Frank C, Schachar N, Dittrich D, Shrive N, DeHaas W, Edwards G: Electromagnetic stimulation of ligament healing in rabbits. Clin Orthop Rel Res 1983c; 175:263–272.

    Google Scholar 

  • Frank C, Woo SL-Y, Andriacchi T, Brand R, Oakes B, Dahners L, DeHaven K, Lewis J, Sabiston P: Normal ligament: structure, function, and composition, in Woo SL-Y, Buckwalter JA (eds): Injury and Repair of the Musculoskeletal Soft Tissues. Park Ridge, American Academy of Orthopaedic Surgeons, 1987, pp 45–101.

    Google Scholar 

  • Frisén M, Magi M, Sonnerup L, Viidik A: Rheological analysis of soft collagenous tissues. Part I: Theoretical considerations. J Biomechanics 1969;2:13–20.

    Google Scholar 

  • Frisén M. Magi M, Sonnerup L, Viidik a: Rheological analysis of soft collagenous tissues. Part II: Experimental evaluations and verifications. J Biomechanics 1969;2:21–28.

    Google Scholar 

  • Fung YCB: Elasticity of soft tissues in simple elongation. Amer J Physiol 1967;213: 1552–1544.

    Google Scholar 

  • Fung YCB: Biomechanics, its scope, history and some problems of continuum mechanics in physiology. App Mech Rev 1968;21-l-20.

    Google Scholar 

  • Fung YCB: Stress-strain history relations of soft tissues in simple elongation, in Fung YCB, Perrone N, Anliker M (eds): Biomechanics: its foundations and objectives. Englewood Cliffs, Prentice-Hall, 1972, pp 181–208.

    Google Scholar 

  • Fung YC: Biomechanics - Mechanical properties of living tissues. New York, Springer-Verlag, 1981.

    Google Scholar 

  • Gathercole LJ, Keller A: X-ray diffraction effects related to superstructure in rat tail tendon collagen. Biochim Biophys Acta 1978;535:253–271.

    Google Scholar 

  • Gathercole LJ, Keller A, Shah JS: The periodic pattern in native tendon collagen; correlation of polarizing with scanning electron microscopy. J Microscopy 1974;102:95–106.

    Article  Google Scholar 

  • Gelbermann R, Goldberg V, An K-N, Banes A: Tendon, in Woo SL-Y, Buckwalter JA (eds): Injury and Repair of the Musculoskeletal Soft Tissues. Park Ridge, American Academy of Orthopaedic Surgeons, 1987, pp 5–40.

    Google Scholar 

  • Gelberman RH, Woo SL-Y, Lothringer K, Akeson WH, Amiel D: Effects of early intermittent passive mobilization on healing canine flexor tendons. J Hand Surg 1982;7:170–175.

    Google Scholar 

  • Gräfe H: Aspekte zur Ätiologie der subkutanen Achillessehnenruptur. Zbl Chir 1969;94:1073–1082.

    Google Scholar 

  • Haut RC, Little RW: A constitutive equation for collagen fibers. J Biomechanics 1972;5:423–430.

    Article  Google Scholar 

  • Harkness RD: Mechanical properties of collagenous tissues, in Gold BS (ed): Treatise on Collagen, Vol 2 Biology of Collagen Part A. London, Academic Press, 1968, pp 247–310.

    Google Scholar 

  • Hirsch G: Tensile properties during tendon healing. Acta Orthop Scand 1974;Suppl 153.

    Google Scholar 

  • Hooley CJ: The Viscoelastic Behaviour of Tendon, thesis, Oxford University, 1977.

    Google Scholar 

  • Hutton P, Ferris B: in Bucknail TE, Ellis H (eds): Wound Healing for Surgeons. London, Balliere Tindall, 1984, pp 286–296.

    Google Scholar 

  • Kennedy JC, Hawkins RJ, Willis RB: Strain gauge analysis of knee ligaments. Clin Orthop Rel Res 1977;129:225–229.

    Google Scholar 

  • Kiiskinen A: Physical training and connective tissues in young mice. Physical properties of Achilles tendons and long bones. Growth 1977;44:123–137.

    Google Scholar 

  • Kiiskinen A, Heikkinen E:Physical training and connective tissues in young mice. Brit J Derm 1976;95:525–529.

    Article  Google Scholar 

  • Labat-Robert J, Robert L: Interactions between structural glycoproteins and collagen, in Nimni ME (ed): Collagen, Vol I Biochemistry, Boca Raton, CRC Press, 1988,173–186.

    Google Scholar 

  • Laos GS, Tipton CM, Cooper RR: Influence of physical activity on ligament insertions in the knees of dogs. J Bone Joint Surg 1971;53A:275–286.

    Google Scholar 

  • Larsen AQ, Viidik A: The influence of diclofenac sodium and indomethacin on healing incisional wounds in skin. Eur Surg Res 1988;20:Suppl 1:58–59.

    Google Scholar 

  • Larsen NP, Forwood MR, Parker AW: Immobilization and retraining of cruciate ligaments in the rat. Acta Orthop Scand 1987;58:260–264.

    Article  Google Scholar 

  • Lewis JL: A note on the application and evaluation of the buckle transducer for knee ligament force. J Biomech Engng 1982;104:125–128.

    Article  Google Scholar 

  • Morgan FR: The mechanical properties of collagen fibres: stress-strain curves. J Soc Leather Trades’ Chem 1960;44:170–182.

    Google Scholar 

  • Nemetschek T, Jonak R, Nemetschek-Gansler H, Riedl H: Über die Bestimmung von Langperioden-Änderungen am Kollagen. Z Naturforsch 1978;33C:928–936.

    Google Scholar 

  • Nimni ME, Harkness RD: Molecular structures and functions of collagen, in Nimni ME (ed): Collagen, Vol I Biochemistry. Boca Raton, CRC Press, 1988, pp 1–77.

    Google Scholar 

  • Noyes FR: Functional properties of knee ligaments and alterations induced by immobilization. Clin Orthop Rel Res 1977;123:240–242.

    Google Scholar 

  • Noyes FR, Torvik PJ, Hyde WB, De Lucas JL: Biomechanics of ligament failure. II: An analysis of immobilization, exercise and reconditioning effects in primates. J Bone Joint Surg 1974;56A:1406–1418.

    Google Scholar 

  • Qurinia A, Viidik A: Hyperbaric oxygen improves the healing of ischaemic flaps but not incisional wounds in skin. Eur Surg Res 1989;21:Suppl 2:81–82.

    Google Scholar 

  • Qurinia A, Viidik A: Design of an ischaemic double flap model, an investigation of blood flow and biomechanical properties, in Hvid I (ed): Proceedings of the 7th Meeting of the European Society of Biomechanics. Aarhus, Aarhus University, in press.

    Google Scholar 

  • Riedl H, Nemetschek T, Jonak R: A mathematical model for the changes of the long-period structure in collagen, in Viidik A, Vuust J (eds): Biology of Collagen, London Academic Press, 1980, pp 289–296.

    Google Scholar 

  • Ruggeri A, Benazzo F: Collagen-proteoglycan interaction, in Ruggeri a, Motta PM (eds): Ultrastructure of the Connective Tissue Matrix. Boston, Martinus Nijhoff, 1984, pp 113–125.

    Google Scholar 

  • Rundgren Ä:Physical properties of connective tissue as influenced by single and repeated pregnancies in the rat. Acta Physiol Scand 1974;Suppl 417.

    Google Scholar 

  • Simon PJ: The Mechanics of Tendon Function in Health and Disease, thesis, Massey University, Palmerston North, New Zealand, 1978.

    Google Scholar 

  • Suominen H, Heikkinen E, Moisio H, Viljama K: Physical and chemical properties of skin in habitually trained and sedentary 31- to 70-year-old men. Brit J Derm 1978;99:147–154.

    Article  Google Scholar 

  • Stucke K: Über das elastische Verhalten der Achillessehne im Belastungsversuch. Langenbecks Arch klin Chir 1950;265:579–599.

    Article  Google Scholar 

  • Tipton CM, James SL, Mergner W, Tchang TK: Influence of exercise on strength of medial collateral knee ligaments of dogs. Am J Physiol 1970;218:894–901.

    Google Scholar 

  • Tipton CM, Matthes RD, Sandage DS: In situ measurement of junction strength and ligament elongation in rats. J Appl Physiol 1974;37:758–761.

    Google Scholar 

  • Viidik A: The effect of training on the tensile strength of isolated rabbit tendons. Scand J Plast Reconstr Surg 1967;1:141–147.

    Article  Google Scholar 

  • Viidik A: A rheological model for uncalcified parallel-fibred collagenous tissue. J Biomechanics 1968a; 1:3–11.

    Article  Google Scholar 

  • Viidik A: Elasticity and tensile strength of the anterior cruciate ligament in rabbits as influenced by training. Acta Physiol Scand 1968b;74:372–380.

    Article  Google Scholar 

  • Viidik A: Tensile properties of achilles tendon systems in trained and untrained rabbits. Acta Orthop Scand 1969;40:261–272.

    Article  Google Scholar 

  • Viidik A: Simultaneous mechanical and light microscopic studies of collagen fibers. Z Anat Entwickl-Ges 1972;136:204–212.

    Article  Google Scholar 

  • Viidik A: Functional properties of collagenous tissues, in Hall DA, Jackson DS (eds): International Review of Connective Tissue Research. New York, Academic Press, 1973;6:127–215.

    Google Scholar 

  • Viidik A: On the correlation between structure and mechanical function of soft connective tissues. Verh Anat Ges 1978;72:75–89.

    Google Scholar 

  • Viidik A: Connective tissues - possible implications of the temporal changes for the aging process. Mech Age Dev 1979a;9:267–285.

    Article  Google Scholar 

  • Viidik A: Biomechanical behavior of soft connective tissues, in Akkaç N (ed): Progress in Biomechanics. Alphen aan den Rijn, Sijthoff & Nordhoff, 1979b, pp 75–113.

    Google Scholar 

  • Viidik A: Mechanical properties of parallel-fibred collagenous tissues, in Viidik A, Vuust J (eds): Biology of Collagen. London, Academic Press, 1980a, pp 237–255.

    Google Scholar 

  • Viidik A: Interdependence between structure and function in collagenous tissues, in Viidik A, Vuust J (eds): Biology of Collagen. London, Academic Press, 1980b, pp 257–280.

    Google Scholar 

  • Viidik A: Age-related changes in connective tissues, in Viidik A (ed): Lectures on Gerontology, Vol 1, Part A, On the Biology of Ageing. London, Academic Press, 1982, pp 173–211.

    Google Scholar 

  • Viidik A. Adaptability of connective tissues, in Saltin B (ed): Biochemistry of Exercise - Metabolic Regulation and its Practical Significance. Camagne, Human Kinetics Publishers, 1986, pp 545–562.

    Google Scholar 

  • Viidik A: Properties of tendons and ligaments, in Skalak R, Chien S (eds): Handbook of Bioengineering. New York, McGraw-Hill, 1987a, pp 6.1–6.19.

    Google Scholar 

  • Viidik A: Biomechanics of tendons and other soft tissues - testing methods and structure-function interdependence, in Bergmann G, KOlbel R, Rohlmann A (eds): Biomechanics: Basic and applied Research. Dordrecht, Martinus Nijhoff, 1987b, pp 59–72.

    Google Scholar 

  • Viidik A: Connections between muscle and bone, in Payne PA (ed): Concise Encyclopaedia on Biomedical and Biological Measurement Systems. Oxford, Pergamon Press, in press.

    Google Scholar 

  • Viidik A, Danielsen CC, Oxlund H: On fundamental and phenomenological models, structure and mechanical properties of collagen, elastin and glycosaminoglycans. Biorheology 1982;19:437–451.

    Google Scholar 

  • Viidik A, Ekholm R: Light and electron microscopic studies of collagen fibers under strain. Z Anat Entwickl-Ges 1968;127:154–164.

    Article  Google Scholar 

  • Viidik A, Gottrup F: Mechanics of healing soft tissue wounds, in Schmid-SchOnbein GR, Woo SL-Y, Zweifach BW (eds): Frontiers in Biomechanics. New York, Springer-Verlag, 1986, pp 262–279.

    Google Scholar 

  • Viidik A, Sandqvist L, Mâgi M: Influence of postmortal storage on the tensile strength characteristics and histology of rabbit ligaments. Acta Orthop Scand 1965;Suppl 79.

    Google Scholar 

  • Wertheim MG: Mémoire sur l’élasticité et la cohésion des principaux tissus du corps humain. Chim Phys 1947;21:385–414.

    Google Scholar 

  • Woo SL-Y, Akeson WH, Amiel D, Convey FR, Matthews JV: The connective tissue response to immobility: A correlative study of the biomechanical and biochemical measurements of the normal and immobilized rabbit knee. Arth and Rheum 1975;18:257–264.

    Article  Google Scholar 

  • Woo SL-Y, Akeson WH, Jemmott GF: Measurements of nonhomogeneous directional mechanical properties of articular cartilage in tension using a video- dimensional analyzer. J Biomech 1976;9:785–791.

    Article  Google Scholar 

  • Woo SL-Y, Ritter MA, Maiel D, Sanders TM, Gomez MA, Kuei SC, Garfin SR, Akesson WH: The biomechanical and biochemical properties of swine tendons - long term effects of exercise on the digital extensors. Conn Tiss Res 1980;7:177–183.

    Article  Google Scholar 

  • Woo SL-Y, Gomez MA, Woo Y-K, Akeson WH: Mechanical properties of tendons and ligaments. II. The relationship between immobilization and exercise on tissue remodeling. Biorheology 1982;19:397–408.

    Google Scholar 

  • Woo SL-Y, Gomez MA, Seguchi Y, Endo CM, Akeson WH: Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res 1983;1:22–29.

    Article  Google Scholar 

  • Woo SL-Y, Orlande CA, Gomez MS, Frank CB, Akeson WH: Tensile properties of medial collateral ligament as a dunction of age. J Orthop Res 1986;4:333–341.

    Google Scholar 

  • Woodhead-Galloway J: Two theories of the structure of the collagen fibril, in Hukins DWL (ed): Connective Tissue Matrix. Deerfield Beach, Weinheim, 1984 133–160.

    Google Scholar 

  • Yahia L-H, Dorwin G: Microscopical investigation of canine anterior cruciate ligament ant patellar tendon: collagen fascicle morphology and architecture. J Orthop Res 1989;7:243–251.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Viidik, A. (1990). Structure and Function of Normal and Healing Tendons and Ligaments. In: Ratcliffe, A., Woo, S.LY., Mow, V.C. (eds) Biomechanics of Diarthrodial Joints. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3448-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3448-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8015-6

  • Online ISBN: 978-1-4612-3448-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics