The Omentum pp 63-73 | Cite as

Can transected spinal cord axons be bribed into regeneration?

  • J. C. de la Torre
  • H. S. Goldsmith

Abstract

Researchers in the field of spinal cord trauma generally recognize a number of factors that can influence the potential regrowth of transected CNS nerve fibres. These factors have been discussed in several reviews (1,2,3).

Keywords

Syringe Neuropathy Neurol Choline Catecholamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    de la Torre JC. Spinal cord injury. Review of basic and applied research. Spine 1981; 6: 313–35.Google Scholar
  2. (2).
    de la Torre JC. Spinal cord injury models. Prog Neurobiol 1984; 22: 531–9.Google Scholar
  3. (3).
    Kiernan JA. Hypotheses concerned with axonal regeneration in the mammalian nervous system. Biol Rev 1979; 54: 155.PubMedCrossRefGoogle Scholar
  4. (4).
    Breasted JH. The Edwin Smith surgical papyrus. 2 volumes. Chicago: University of Chicago Press, 1930.Google Scholar
  5. (5).
    Commission JW, Toffano G. The effect of GM1 ganglioside on coerulospinal noradrenergic, adult neurons and on fetal monoaminergic neurons transplanted into the transected spinal cord of the adult rat. Brain Res 1986; 380: 205–15.CrossRefGoogle Scholar
  6. (6).
    de la Torre JC, Hill PK, Gonzalez M, Parker J. Evaluation of transected spinal cord regeneration in the rat. Exp Neurol 1984; 84: 186–206.Google Scholar
  7. (7).
    de la Torre JC, Richard M, Ivan LP. Experimental problems in spinal cord neural reconstruction. In: Gilad GM, Gorio A, Kreutzberg G, eds. Process of recovery from neural trauma. New York: Springer, 1984: 317–24.Google Scholar
  8. (8).
    Nygre LG, Olson L, Seiger A. Monoaminergic reinnervation of the transected spinal cord by homologous fetal brain grafts. Brain Res 1977; 129: 227–35.CrossRefGoogle Scholar
  9. (9).
    Keirnan JA. An explanation of axonal regeneration in peripheral nerves and its failure in the central nervous system. Med Hypoth 1978; 4: 15–26.CrossRefGoogle Scholar
  10. (10).
    Monafo WW, Eliason S, Shimazaki S, Sugimoto H. Regional blood flow in resting and stimulated sciatic nerve of diabetic rats. Exp Neurol 1988; 99: 607–14.PubMedCrossRefGoogle Scholar
  11. (11).
    Powerll HC, Longo F, LeBeau J, Myers R. Abnormal nerve regeneration in galactose neuropathy. J Neuropath Exp Neurol 1986; 45: 151–60.CrossRefGoogle Scholar
  12. (12).
    Ravens JR. Vascular changes in the human senile brain. In: Cervos-Navarro J, ed. Pathology of cerebrospinal microcirculation. New York: Raven Press, 1978; 234: H59–H66.Google Scholar
  13. (13).
    Tuck RR, Low PA. Endoneural blood flow and oxygen tension in the sciatic nerves of rats with experimental diabetic neuropathy. Brain 1984; 107: 935–50.PubMedCrossRefGoogle Scholar
  14. (14).
    Youmans JR, Albrand OW. Cerebral blood flow in clinical problems. In: Youmans JR, ed. Neurological surgery. Philadelphia: WB Saunders, 1973; 651–97.Google Scholar
  15. (15).
    Goldsmith HS, Griffith A, Kupferman A, Catsimpoolas N. Lipid angiogenic factor from omentum. JAMA 1984; 252: 2034–6.PubMedCrossRefGoogle Scholar
  16. (16).
    Goldsmith HS, Steward E, Chen F, Duckett S. Application of intact omentum to the normal and traumatized spinal cord. In: Kao C, Bunge R, Reier P, eds. Spinal cord reconstruction. New York: Raven Press, 1983: 2350.Google Scholar
  17. (17).
    Goldsmith HS, Steward E, Duckett S. Early application of pedicled omentum to the acutely traumatized spinal cord. Paraplegia 1985; 23: 100–12.PubMedCrossRefGoogle Scholar
  18. (18).
    de la Torre JC. Catecholamine fibre regeneration across a collagen bioimplant after spinal cord transection. Brain Res Bull 1984; 9: 545–52.Google Scholar
  19. (19).
    de Medinaceli L, Church A. Peripheral nerve reconnection: inhibition of early degenerative processes through the use of a novel fluid medium. Exp Neurol 1984; 84: 396–408.PubMedCrossRefGoogle Scholar
  20. (20).
    Gelderd JB. Growth of blood vessels and neurites into a collagen matrix placed between the cut ends of the transected spinal cord. Soc Neurosci 1987; 13: 395. [Abstract]Google Scholar
  21. (21).
    de la Torre JC, Goldsmith HS. Collagen omentum repair after experimental spinal cord transection. Ann Neurol 1987; 22: 141–2.Google Scholar
  22. (22).
    de la Torre JC, Goldsmith HC. Increased blood flow enhances axon regeneration after spinal transection. Neurosci Lett 1988; 94: 269–73.PubMedCrossRefGoogle Scholar
  23. (23).
    Ingvar SH, Lassen NA. Regional blood flow of the vertebral cortex determined by krypton. Acta Physiol Scand 1962; 54: 325–38.CrossRefGoogle Scholar
  24. (24).
    Sternberger LA. Immunocytochemistry. New York: Wiley, 1986: 90–209.Google Scholar
  25. (25).
    de la Torre JC. Dynamics of brain monoamines. New York: Plenum Press, 1972.Google Scholar
  26. (26).
    Hokfelt T, Fuxe K, Goldstein M. Immunohistochemical studies on monoamine containing cell systems. Brain Res 1973; 62: 461–9.PubMedCrossRefGoogle Scholar
  27. (27).
    Pearson J, Goldstein M, Markey K, Brandeis L. Human brainstream catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 1983; 8: 3–32.PubMedCrossRefGoogle Scholar
  28. (28).
    de la Torre JC, Goldsmith HS. Collagen-omentum repair after experimental spinal cord transection. Ann Neurol 1987; 22: 141–2.Google Scholar
  29. (29).
    Siek G, Marquis J, Goldsmith HS. (This volume, p. 83).Google Scholar
  30. (30).
    Goldsmith HS, McIntosh R, Vezina R, Colton T. Vasoactive neurochemicals identified in omentum. Br J Neurosurg 1987; 1: 359.PubMedCrossRefGoogle Scholar
  31. (31).
    Goldsmith HS, Marquis J, Siek G. Choline acetyltransferase activity in omental tissue. Br J Neurosurg 1987; 1: 457.Google Scholar
  32. (32).
    Butler RN. Psychiatric aspects of cerebrovascular diseases in the aged. Res Pubi Ass 1966; 41: 255; 66.Google Scholar
  33. (33).
    Worm-Petersen J, Pakkenberg H. Atherosclerosis of cerebral arteries, pathological and clinical correlates. J Gerontol 1969; 23: 445–9.Google Scholar
  34. (34).
    Darwish H, Archer C, Modin J. The anterior spinal artery collateral in coarctation of the aorta. A clinical angiographic correlation. Arch Neurol 1979; 36: 240–3.PubMedGoogle Scholar
  35. (35).
    De Girolami U, Zivin J. Neuropathology of spinal cord ischaemia in the rabbit. J Neuropath Exp Neurol 1982; 41: 129–49.CrossRefGoogle Scholar
  36. (36).
    Doppman JL, Girton M, Popvsky N. Acute occlusion of the spinal vein experimental study in monkeys. J Neurosurg 1979; 51: 201–4.PubMedCrossRefGoogle Scholar
  37. (37).
    Branston NM, Strong A, Symon L. Extracellular potassium activity, envoked potentials and tissue flow. Relationship during progressive ischaemia in baboon cerebral cortex. J Neurol Sci 1977; 32: 305–21.PubMedCrossRefGoogle Scholar
  38. (38).
    Sharborough, M. J, Sundt T. Correlation of cortical electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 1973; 4: 674–93.CrossRefGoogle Scholar
  39. (39).
    Tamura A, Asano T, Sano K. Correlation between CBF and histologic changes following temporary middle cerebral artery occlusion. Stroke 1980; 11: 487–93.PubMedCrossRefGoogle Scholar
  40. (40).
    Sakurada O, Kennedy C, Jehle J, Brown J, Carbin G, Sokoloff L. Measurement of local cerebral blood flow with iodo (14C) antipyrine. Am J Physiol 1973; 4: 674–93.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • J. C. de la Torre
    • 1
  • H. S. Goldsmith
    • 2
  1. 1.Division of NeurosurgeryUniversity of Ottawa Health ServicesOttawaCanada
  2. 2.Department of SurgeryBoston University School of MedicineBostonUSA

Personalised recommendations