Skip to main content

From Visual Structure to Perceptual Function

  • Chapter
Science of Vision

Abstract

We are bombarded by light. It caroms off the objects around us in an apparent chaos of changing wavelengths and intensities. Every surface that deflects its path leaves its stamp, however, and so organisms have evolved that form and process images, the tracks of those distant objects. Vision experienced is an apprehension of those objects within a structure of sensory qualities. We describe our experienced images in terms of size, shape, color, brightness, direction, velocity, depth. These qualities arise in the brain’s image processing circuitry and resonate to the world’s intrinsic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson EH, Movshon JA (1982). Phenomenal coherence of moving visual patterns. Nature (London) 300:523–525.

    CAS  Google Scholar 

  • Albrecht DG, Farrar SB, Hamilton DB (1984). Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex. J. Physiol. 347:713–739.

    PubMed  CAS  Google Scholar 

  • Allman J, Meizin F, McGuiness E (1985). Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annu. Rev. Neurosci. 8:407–430.

    PubMed  CAS  Google Scholar 

  • Alwitt LF (1981). Two neural mechanisms related to modes of selective attention. J. Exp. Psychol.: Human Percept. Perform. 7:324–332.

    CAS  Google Scholar 

  • Arditi A (1986). Binocular vision. In Chap. 23. Handbook of Perception and Human Performance, (K Boff, L Kaufman, JP Thomas, eds.), Wiley, New York.

    Google Scholar 

  • Beck J (1966). Effect of orientation and of shape similarity on perceptual grouping. Percept. Psychophys. 1:300–302.

    Google Scholar 

  • Beck J (1982). Textural segmentation. In Organization and Representation in Perception (J Beck, ed.), pp. 285–317. Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Berbaum K, Bever T, Chung CS (1983). Light source position in the perception of object shape. Perception 12:411–416.

    PubMed  CAS  Google Scholar 

  • Berbaum K, Bever T, Chung CS (1984). Extending the perception of shape from known to unknown shading. Perception 13:479–488.

    PubMed  CAS  Google Scholar 

  • Best J (1989). Cognitive Psychology, 2nd ed. West Publishing.

    Google Scholar 

  • Blakemore C, Julesz B (1971). Stereoscopic depth aftereffect produced without monocular cues. Science 171:286–288.

    PubMed  CAS  Google Scholar 

  • Blakemore C, Sutton P (1969). Size adaptation: A new aftereffect. Science 166:245–247.

    PubMed  CAS  Google Scholar 

  • Brand J (1971). Classification without identification in visual search. J. Exp. Psychol. 23:178–186.

    CAS  Google Scholar 

  • Breitmeyer BG (1975). Simple reaction time as a measure of the temporal response properties of transient and sustained channels. Vision Res. 15:1411–1412.

    PubMed  CAS  Google Scholar 

  • Breitmeyer BG (1984). Visual Masking: An Integrative Approach. Oxford University Press, New York.

    Google Scholar 

  • Breitmeyer BG, Ganz L (1976). Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression and information processing. Psychol. Rev. 83:1–35.

    PubMed  CAS  Google Scholar 

  • Brown J, Weisstein N (1985). Flickering phantoms: A figure/ground approach. Paper presented at the 57th Annual Meeting of the Eastern Psychological Association, Baltimore, MD.

    Google Scholar 

  • Brown J, Weisstein N (1986). Depth information within phantom inducing regions can influence phantom visibility. Paper presented at the 58th Annual Meeting of the Eastern Psychological Association, Baltimore, MD.

    Google Scholar 

  • Brown J, Weisstein N (1988). A spatial frequency effect on perceived depth. Percept. Psy- chophys. 44:157–166.

    CAS  Google Scholar 

  • Calis G, Leeuwenberg E (1981). Grounding the figure. J. Exp. Psychol.: Human Percept. Perform. 7:1386–1397.

    CAS  Google Scholar 

  • Campbell FW, Kulikowski JJ (1966). Orientation selectivity of the human visual system. J. Physiol. 187:437–445.

    PubMed  CAS  Google Scholar 

  • Cavanaugh P, Tyler CW, Favreau OE (1984). Perceived velocity of moving chromatic gratings. J. Opt. Soc. Am. Sect. A:Opt. Image Sei. 1:893–899.

    Google Scholar 

  • Crawford BH (1947). Visual adaptation in relation to brief conditioning stimuli. Proc. R. Soc. London 134:283–302.

    CAS  Google Scholar 

  • Davis ET, Kramer P, Graham N (1983). Uncertainty about spatial frequency, spatial position, or contrast of visual patterns. Percept. Psychophys. 33:20–28.

    PubMed  CAS  Google Scholar 

  • DeMonasterio FM, Gouras P (1975). Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. 251:167–195.

    CAS  Google Scholar 

  • Derrington AM, Lennie P (1984). Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque. J. Physiol. (London) 357:219–240.

    CAS  Google Scholar 

  • De Valois K (1977). Spatial frequency adaptation can enhance contrast sensitivity. Vision Res. 17:1057–1065.

    PubMed  Google Scholar 

  • Dow B, Gouras P (1973). Color and spatial specificity of single units in rhesus monkey foveal striate cortex. J. Neurophysiol. 36:79–100.

    PubMed  CAS  Google Scholar 

  • Enns JT (1988). Three dimensional figures that pop out in visual search. Paper presented at First International Conference on Visual Search. Durham, U.K.

    Google Scholar 

  • Enns JB, Gilani AB (1988). Three dimensionality and discriminability in the object superiority effect. Percept. Psychophys. 44:243–256.

    PubMed  CAS  Google Scholar 

  • Enns JT, Printzmetal W (1984). The role of redundancy in the object-line effect. Percept. Psychophys. 35:22–32.

    PubMed  CAS  Google Scholar 

  • Enroth-Cugell C, Robson JG (1966). The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:517–552.

    PubMed  CAS  Google Scholar 

  • Foster KH, Gaska JP, Nagler M, Pollen D (1985). Spatial and temporal frequency selectivity of neurones in visual cortical areas VI and V2 of the macaque monkey. J. Physiol. (London) 365:331–363.

    CAS  Google Scholar 

  • Fries W, Albus K, Creutzfeldt O (1977). Effects of interacting visual patterns on single cell responses in cat’s striate cortex. Vision Res. 17:1001–1008.

    PubMed  CAS  Google Scholar 

  • Frisby JP, Mayhew JE (1978). The relationship between apparent depth and disparity in revalrous-texture stereograms. Perception 7:661–678.

    PubMed  CAS  Google Scholar 

  • Genter CR (1981). Temporal factors in the perception of complex imagery. Unpublished Ph.D. thesis, State University of New York, Buffalo. Genter CR, Weisstein N (1981). Flickering phantoms: A motion illusion without motion. Vision Res. 21:963–966.

    Google Scholar 

  • Gibson JJ, Radner M (1937). Adaptation, after-effect, and contrast in the perception of tilted lines. I. Quantitative studies. J. Exp. Psychol. 20:453–467.

    Google Scholar 

  • Gibson JJ, Kaplan GA, Reynolds HN, Wheeler K (1969). The change from visible to invisible: A study of optical transitions. Percept. Psychophys. 5:113–116.

    Google Scholar 

  • Ginsburg A (1978). Visual Information Processing Based on Spatial Filters Constrained By Biological Data. Aerospace Medical Research Laboratory, Wright Patterson Air Force Base, Ohio.

    Google Scholar 

  • Gouras P (1974). Opponent-color cells in different layers of foveal striate cortex. J. Physiol. 238:583–602.

    PubMed  CAS  Google Scholar 

  • Graham N (1985). Detection and identification of near-threshold visual patterns. J. Opt. Soc. Am. A 2:1468–1482.

    PubMed  CAS  Google Scholar 

  • Graham N (1989). Visual Pattern Analyzers. Oxford University Press, New York, in press.

    Google Scholar 

  • Graham N, Nachmias J (1971). Detection of grating patterns containing two spatial frequencies: A comparison of single channel and multiple-channels models. Vision Res. 11:251–259.

    PubMed  CAS  Google Scholar 

  • Graham N, Beck J, Sutter A (1989). Two nonlinearities in texture segregation. Invest. Ophthalmol. Visual Sei. 30(Suppl):161.

    Google Scholar 

  • Green M (1981). Psychophysical relationships among mechanisms sensitive to pattern, motion, and flicker. Vision Res. 21:971–983.

    PubMed  CAS  Google Scholar 

  • Greenlee MG, Magnussen S (1988). Interaction among spatial frequency and orientation channels adapted concurrently. Vision Res. 28:1303–1310.

    PubMed  CAS  Google Scholar 

  • Grossberg S, Mingolla E (1985a). Neural dynamics of perceptual grouping: Textures, boundaries, and emergent features. Percept. Psychophys. 38:141–171.

    PubMed  CAS  Google Scholar 

  • Grossberg S, Mingolla E (1985b). Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychol. Rev. 92:173–211.

    PubMed  CAS  Google Scholar 

  • Growney R (1976). The function of contour in metacontrast. Vision Res. 16:253–261.

    PubMed  CAS  Google Scholar 

  • Growney R, Weisstein N, Cox S (1977). Metacontrast as a function of spatial separation with narrow line targets and masks. Vision Res. 17:1205–1210.

    PubMed  CAS  Google Scholar 

  • Gyoba J (1983). Stationary phantoms: A completion effect without motion or flicker. Vision Res. 22:119–134.

    Google Scholar 

  • Hochberg J (1971). Perception: Space and movement. In Woodworth and Schlosbergs Experimental Psychology,(JA Kling, LA Riggs, eds.), pp. 475–550. Holt, Rinehart, & Winston, New York.

    Google Scholar 

  • Hubel DH, Wiesel TN (1974). Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158:267–294.

    PubMed  CAS  Google Scholar 

  • Hurvich LM, Jameson D (1955). Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation and hue in normal and dichromatic vision. J. Opt. Soc. Am. 45:602–616.

    PubMed  CAS  Google Scholar 

  • Ikeda H, Wright MJ (1975). Spatial and temporal properties of “sustained” and “transient” neurones in area 17 of the cat’s visual cortex. Exp. Brain Res. 22:363–383.

    Google Scholar 

  • Julesz B (1975). Experiments in the visual perception of texture. Sei. Am. 232:34–43.

    CAS  Google Scholar 

  • Julesz B (1978). Perceptual limits of texture discrimination and their implications for figure-ground separation. In Formal Theories of Perception (E Leeuwenberg, ed.), pp. 205–216. Wiley, New York.

    Google Scholar 

  • Julesz B (1987). Preattentive human vision: Link between neurophysiology and psychophysics. In Handbook of Physiology Section I-Nervous System. Vol. 5, Higher Functions of the Brain, Pt 2 (VB Mountcastle, ed.). American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Kanisza G, Gerbino W (1982). Amodal completion: Seeing or thinking? in Organization and Representation in Perception (J. Beck, ed.), pp. 167–190. Lawrence Erlbaum, Hillsdale, N.J.

    Google Scholar 

  • Kaufman D (1989). Visual search for conjunction of motion and orientation: The effects of varying distractor-type ratio and relative temporal frequencies. Invest. Ophthalmol. Visual Sei. 30:456.

    Google Scholar 

  • Keesey UT (1972). Flicker and pattern detection: A comparison of thresholds. J. Opt. Soc. Am. 56:446–448.

    Google Scholar 

  • Kelly DH (1961). Visual response to time-dependent stimuli. I. Amplitude sensitivity measurements. J. Opt. Soc. Am. 51:422–429.

    CAS  Google Scholar 

  • Kinchla HA, Wolfe JM (1979). The order of visual processing: “Top-down”, “bottom-up”, or “middle-out”. Percept. Psychophys. 25:225–231.

    PubMed  CAS  Google Scholar 

  • King-Smith PE, Kulikowski JJ (1975). Pattern and flicker detection analysed by subthreshold summation. J. Physiol. 249:519–548.

    PubMed  CAS  Google Scholar 

  • Klymenko V, Weisstein N (1986). Spatial frequency differences can determine figure-ground organization. J. Exp. Psychol. Human Percept. Perform. 12:324–330.

    CAS  Google Scholar 

  • Klymenko V, Weisstein N (1987). The resonance theory of kinetic shape perception and the motion-induced contour. In The Perception of Illusory Contours (S Petry, GE Meyer, eds.), pp 143–148. Springer-Verlag, New York.

    Google Scholar 

  • Klymenko V, Weisstein N (1989a). Figure and ground in space and time: 1. Temporal response surfaces of perceptual organization. Perception 18:627–637.

    CAS  Google Scholar 

  • Klymenko V, Weisstein N (1989b). Figure and ground in space and time: 2. Frequency velocity and perceptual organization. Perception 18:639–648.

    CAS  Google Scholar 

  • Klymenko V, Weisstein N, Ralston J (1987). Illusory contours, projective transformations, and kinetic shape perception. Acta Psychol. 64:229–243.

    CAS  Google Scholar 

  • Klymenko V, Weisstein N, Topolski R, Hsieh CH (1989) Spatial and temporal frequency in figure-ground organization. Percep. Psychophys. 45:395–403.

    CAS  Google Scholar 

  • offka K(1935). Principles of Gestalt Psychology Harcourt Brace, New York.

    Google Scholar 

  • Kulikowski JJ, Tolhurst DJ (1973). Psychophysical evidence for sustained and transient detectors in human vision. J. Physiol. 232:149–162.

    PubMed  CAS  Google Scholar 

  • Kulikowski JJ, Abadi R, King-Smith PE (1973). Orientation selectivity of grating and line detectors in human vision. Vision Res. 13:1479–1486.

    PubMed  CAS  Google Scholar 

  • Lanze M, Weisstein N, Harris J (1982). Perceived depth vs. structural relevance in the object superiority effect. Percept. Psychophys. 31:376–382.

    PubMed  CAS  Google Scholar 

  • Lanze M, Maguire W, Weisstein N (1985). Emergent features: A new factor in the object-superiority effect? Percept. Psychophys. 38:438–442.

    PubMed  CAS  Google Scholar 

  • Lawson RB, Cowan E, Gibbs TD, Whitmore CG (1974). Stereoscopic enhancement and erasure of subjective contours. J. Exp. Psychol. 103:1142–1146.

    PubMed  CAS  Google Scholar 

  • Leibovic KN (1969). Some problems of information processing and models of the visual pathway. J. Theoret. Biol. 22:62–79.

    CAS  Google Scholar 

  • Leibovic KN (1972). Nervous System Theory. Academic Press, New York.

    Google Scholar 

  • Leibovic KN, Balsleve E, Mathieson TA (1971). Binocular vision and pattern recognition. Kybernetic 8:14–23.

    CAS  Google Scholar 

  • Livingstone MS, Hubel DH (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7:3416–3468.

    PubMed  CAS  Google Scholar 

  • Lu C, Fender DH (1972). The interaction of color and luminance in stereoscopic vision. Invest. Ophthalmol. Visual Sei. 11:482–490.

    CAS  Google Scholar 

  • Maguire W, Baizer J (1982). Luminance coding of briefly presented stimuli in area 17 of the rhesus monkey. J. Neurophysiol. 47:128–137.

    PubMed  CAS  Google Scholar 

  • Maguire W, Brown J (1987). The current state of research into visual phantoms. In The Perception of Illusory Contours (S Petry, GE Meyer, eds.), pp 213–219. Springer-Verlag, New York.

    Google Scholar 

  • Maguire W, Sitkowski S (1984). The role of target discriminability and distractor redundancy in discrimination of numbers among letters. Paper presented at the 57th Annual Meeting of the Eastern Psychological Association, Baltimore, MD.

    Google Scholar 

  • Maguire W, Meyer GE, Baizer JS (1980). The McCollough effect in the rhesus monkey. Invest. Ophthalmol. Visual Sei. 19:312–324.

    Google Scholar 

  • Marlin SG, Hasan SS, Cynander MS (1988). Direction-selective adaptation in simple and complex cells in cat striate cortex. J. Neurophysiol. 59:1314–1330.

    PubMed  CAS  Google Scholar 

  • Maunsell JHR, Newsome WT (1987). Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10:363–401.

    PubMed  CAS  Google Scholar 

  • Maunsell JHR, Van Essen DC (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurophysiol. 3:2563–2586.

    CAS  Google Scholar 

  • McCollough C (1965). Color adaptation of edge detectors in the human visual system. Science 149:1115–1116.

    PubMed  CAS  Google Scholar 

  • Merigan WH (1989). Chromatic and achromatic vision of macaques: Role of the p pathway. J. Neurosci. 9:776–783.

    PubMed  CAS  Google Scholar 

  • Meyer GE, Dougherty T (1987). Effects of flicker-induced depth on chromatic subjective contours. J. Exp. Psychol.: Human Percept. Perform. 13:355–360.

    Google Scholar 

  • Meyer GE, Maguire W (1977). Spatial frequency and the mediation of short term visual storage. Science 198:524–525.

    PubMed  CAS  Google Scholar 

  • Meyer GE, Maguire W (1981). Effects of spatial-frequency specific adaptation and target duration on visual persistence. J. Exp. Psychol.: Human Percept. Perform. 7:151–156.

    CAS  Google Scholar 

  • Michael CR (1978a). Color vision mechanisms in monkey striate cortex: Simple cells with dual opponent-color receptive fields. J. Neurophysiol. 41:1233–1249.

    PubMed  CAS  Google Scholar 

  • Michael CR (1978b). Color sensitive complex cells in monkey striate cortex. J. Neurophysiol. 41:1250–1266.

    PubMed  CAS  Google Scholar 

  • Movshon JA, Adelson EH, Gizzi SM, Newsome WT (1986) The analysis of moving visual patterns. In Pattern Recognition Mechanisms, (C Chagas, R Gatass, C Gross, eds.), pp 117–151. Springer-Verlag, New York.

    Google Scholar 

  • Murch GM (1976). Classical conditioning of the McCollough effect: Temporal parameters. Vision Res. 19:939–942.

    Google Scholar 

  • Nakayama K, Shimojo S, Silverman GH (1989). Stereoscopic depth: Its relation to image segmentation, grouping, and the recognition of occluded objects. Perception, in press.

    Google Scholar 

  • Olzak LA, Thomas JP (1986). Seeing spatial patterns. In Handbook of Perception and Human Performance (K Boff, L Kaufman, JP Thomas, eds.), Chapt. 7. Wiley, New York.

    Google Scholar 

  • Pantle A, Sekuler R (1968). Velocity-sensitive elements in human vision: Initial psychophysical evidence. Vision Res. 8:445–450.

    PubMed  CAS  Google Scholar 

  • Pentland AP (1985) The focal gradient: Optics ecologically salient. Invest. Ophthalmol. Visual Sei. 26:243.

    Google Scholar 

  • Pizer S (1988). Multiscale methods and the segmentation of medical images. TR88–051 Department of Computer Science, University of North Carolina at Chapel Hill.

    Google Scholar 

  • Pokorny J, Smith VC (1986). Colorimetry and color discrimination. In Handbook of Perception and Human Performance (K Boff, L Kaufman, JP Thomas, eds.), Chapt. 8. Wiley, New York.

    Google Scholar 

  • Pomerantz JR, Kubovy M (1986). Theoretical approaches to perceptual organization. In Handbook of Perception and Human Performance Vol. 2: Cognitive Processes and Performance (KR Boff, L Kaufman, JP Thomas, eds.), Chapt. 36. Wiley, New York.

    Google Scholar 

  • Ramachandron VS (1988). Perception of shape from shading. Nature (London) 331:133–136.

    Google Scholar 

  • Ramachandron VS, Anstis S (1986). Figure-ground segregation modulates apparent motion. Vision Res. 26:1969–1975.

    Google Scholar 

  • Ramachandran VS, Gregory RL (1978). Does colour provide an input to human motion perception? Nature (London) 275:55–56.

    CAS  Google Scholar 

  • Ratliff F (1965). Mach Bands: Quantitative Studies on Neural Networks in the Retina. Holden-Day, San Francisco.

    Google Scholar 

  • Regan D (1986). Visual processing of four kinds of relative motion. Vision Res. 26:127–145.

    PubMed  CAS  Google Scholar 

  • Regan D, Beverly KI (1978). Looming detectors in the human visual pathway. Vision Res. 18:415–421.

    PubMed  CAS  Google Scholar 

  • Rogowitz BE (1983). Spatial temporal interactions- Backward and forward metacontrast masking with sine-wave gratings. Vision Res. 23:1057–1093.

    PubMed  CAS  Google Scholar 

  • Rubin E (1958). Figure and ground. In Readings in Perception. (DC Beardslee, M Wert-heimer, eds.). Van Nostrand, Princeton, NJ. (Original work published 1921.).

    Google Scholar 

  • Sachs MB, Nachmias J, Robson J (1971). Spatial-frequency channels in human vision. J. Opt. Soc. Am. 61:1176–1186.

    PubMed  CAS  Google Scholar 

  • Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci. 6:145–157.

    PubMed  CAS  Google Scholar 

  • Schiller P, Finlay BL, Volman SF (1976). Quantitative studies of single-cell properties in monkey striate cortex II. Orientation specificity and ocular dominance. J. Neurophysiol. 39:1320–1333.

    CAS  Google Scholar 

  • Scott TR, Powell DA (1963). Measurement of a visual motion aftereffect in the rhesus monkey. Science 140:57–59.

    PubMed  CAS  Google Scholar 

  • Sekuler R, Pantle A (1967). A model for the aftereffects of seen movement. Vision Res. 7:427–439.

    PubMed  CAS  Google Scholar 

  • Shapley R, Gordon J (1985). Nonlinearity in the perception of form. Percept. Psychophys. 37:84–88.

    PubMed  CAS  Google Scholar 

  • Shapley R, Kaplan E, Soodak R (1981). Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature (London) 292: 543–545.

    CAS  Google Scholar 

  • Shiffrin RM, Schneider W (1977). Controlled and automatic information processing II. Perceptual learning, automatic attending, and a general theory. Psychol. Rev. 84: 127–190.

    Google Scholar 

  • Shimojo S, Nakayama K (1990). Amodal representation of occluded surfaces: Role of invisible stimuli in apparent motion correspondence. Perception (In Press).

    Google Scholar 

  • Shimojo S, Silverman GH, Nakayama K (1988). An occlusion-related mechanism of depth perception based on motion and interocular sequence. Nature, 333:265–268.

    PubMed  CAS  Google Scholar 

  • Skowbo D (1984). Are McCollough effects conditioned responses. Psychol. Bull. 96: 215–226.

    PubMed  CAS  Google Scholar 

  • Smith AT (1985). Velocity coding: Evidence from perceived velocity shifts. Vision Res. 25:1969–1976.

    PubMed  CAS  Google Scholar 

  • Smith AT, Over R (1975). Tilt aftereffects with subjective contours. Nature 257:581–582.

    PubMed  CAS  Google Scholar 

  • Strohmeyer CF (1978). Form-color aftereffects in human vision. Handbook of Sensory Physiology: Vol 8. Perception (R Held, H Leibowitz, HL Teuber, eds.), pp 97–142. Springer-Verlag, New York.

    Google Scholar 

  • Teller D (1984). Linking propositions. Vision Res. 10:1233–1246.

    Google Scholar 

  • Thompson P (1981). Velocity aftereffects: The effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli. Vision Res. 21:337–345.

    PubMed  CAS  Google Scholar 

  • Tolhurst DJ, Barfield LP (1978). Interactions between spatial frequency channels. Vision Res. 18:951–958.

    PubMed  CAS  Google Scholar 

  • Treisman A (1986). Properties, parts, and objects. In Handbook of Perception and Human Performance (K Boff, L Kaufman, JP Thomas, eds.), Chapt. 35. Wiley, New York.

    Google Scholar 

  • Treisman A, Gormican S (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychol. Rev. 95:15–48.

    PubMed  CAS  Google Scholar 

  • Tynan P, Sekuler R (1975a). Simultaneous motion contrast: Velocity, sensitivity, and depth response. Vision Res. 15:1231–1238.

    PubMed  CAS  Google Scholar 

  • Tynan P, Sekuler R (1975b). Moving visual phantoms: A new completion effect. Science 188:951–952.

    PubMed  CAS  Google Scholar 

  • Van Nes FL, Bowman MA (1967). Spatial modulation transfer in the human eye. J. Opt. Soc. Am. 57:401–406.

    Google Scholar 

  • Vautin RG, Berkley MA (1977). Responses of single cells in cat visual cortex to prolonged stimulus movement: Neural correlates of visual aftereffects. J. Neurophysiol. 40:1051–1065.

    PubMed  CAS  Google Scholar 

  • von der Heydt R, Peterhans E, Baumgartner G (1984). Illusory contours and cortical neuron responses. Science 224:1260–1261.

    PubMed  Google Scholar 

  • Walker P, Powell DJ (1974). Lateral interaction between neural channels sensitive to velocity in human visual system. Nature (London) 252:732–733.

    CAS  Google Scholar 

  • Watson AB (1986). Temporal Sensitivity. In Handbook of Perception and Human Performance (K Boff, L Kaufman, JP Thomas, eds.), Chapt. 6. Wiley, New York.

    Google Scholar 

  • Watson AB, Nachmias J (1977). Patterns of temporal interaction in the detection of gratings. Vision Res. 17:893–902.

    PubMed  CAS  Google Scholar 

  • Watson AB, Robson JG (1981). Discrimination at threshold: Labelled detectors in human vision. Vision Res. 21:1115–1122.

    PubMed  CAS  Google Scholar 

  • Weisstein N (1968). A Rashevsky-Landahl neural net: Simulation of metacontrast. Psychol. Rev. 75:494–521.

    PubMed  CAS  Google Scholar 

  • Weisstein N (1970). Neural symbolic activity: a psychophysical measure. Science, 168: 1489–1491.

    PubMed  CAS  Google Scholar 

  • Weisstein N (1972). Metacontrast. In Handbook of Sensory Physiology (D. Jameson & L. Hurvich, eds.), Vol. 7:233–272. Springer-Verlag, Berlin.

    Google Scholar 

  • Weisstein N (1973). Beyond the yellow Volkswagen detector and the grandmother cell: A general strategy for the exploration of operations in human pattern recognition. In Contemporary Issues in Cognitive Psychology: The Loyola Symposium (R Solso, ed.). Winston & Sons, Washington, DC.: 17–51.

    Google Scholar 

  • Weisstein N, Harris CS (1974). Visual detection of line segments: An object-superiority effect. Science 186:752–755.

    PubMed  CAS  Google Scholar 

  • Weisstein N, Harris CS (1980). Masking and unmasking of distributed representations in the visual system. In Visual Coding and Adaptability (CS Harris, ed.). Erlbaum, Hillsdale, NJ:317–364.

    Google Scholar 

  • Weisstein N, Maguire W (1978). Computing the next step: Psychophysical measures of representation and interpretation. In Computer Vision Systems (AR Hanson, EM Rise-man, eds.), pp 243–260. Academic Press, New York.

    Google Scholar 

  • Weisstein N, Wong E (1986). Figure-ground organization and the spatial and temporal responses of the visual system. In Pattern Recognition by Humans and Machines Vol. 2. (E Schwab, HC Nusbaum, eds.), Academic Press, New York.

    Google Scholar 

  • Weisstein N, Wong E (1987). Figure-ground organization affects the early visual processing of information. In Vision, Brain, and Cooperative Computation (MA Arbib, AR Hanson, eds.). MIT Press, Cambridge MA.

    Google Scholar 

  • Weisstein N, Matthews M, Berbaum K (1974). Illusory contours can mask real contours. Bull. Psychon. Soc. 4:266.

    Google Scholar 

  • Weisstein N, Ozog G, Szoc R (1975). A comparison and elaboration of two models of metacontrast. Psychol. Rev. 82:375–343.

    Google Scholar 

  • Weisstein N, Maguire W, Berbaum K (1977). A phantom motion aftereffect. Science 189:955–958.

    Google Scholar 

  • Weisstein N, Maguire W, Williams MC (1982a). The effect of perceived depth of phantoms and the phantom motion aftereffect. Organization and Representation in Perception. Erlbaum, Hillsdale, NJ.:235–249.

    Google Scholar 

  • Weisstein N, Williams MC, Harris CS (1982b). Depth, connectedness, and structural relevance in the object-superiority effect: Line segments are harder to see in flatter patterns. Perception 11:5–17.

    PubMed  CAS  Google Scholar 

  • Wertheim AH (1990). Visual vestibular and oculomotor interactions in the perception of object motion during egomotion. In The Perception and Control of Egomotion (R Warren, AH Wertheim, eds.). Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Williams A, Weisstein N (1977). The time course of object-superiority with contexts whose local environments are similar. Bull. Psychon. Soc. Abstr. 10:9243.

    Google Scholar 

  • Williams A, Weisstein N (1978). Line segments are perceived better in a coherent contest than alone: An object-line effect. Memory Cognit. 6:85–90.

    CAS  Google Scholar 

  • Williams MC (1980). Fast and slow response to configurational factors in “object superiority” stimuli. Unpublished Ph.D. thesis, State University of New York, Buffalo, NY.

    Google Scholar 

  • Williams MC, Weisstein N (1984). The effect of perceived depth and connectedness on metacontrast functions. Vision Res. 24:1279–1288.

    PubMed  CAS  Google Scholar 

  • Wohlgemuth A (1911). On the aftereffect of seen movement. Br. J. Psychol. Monogr. Suppl. 1.

    Google Scholar 

  • Wong E, Weisstein N (1982). A new perceptual contest-superiority effect: Line segments are more visible against a figure than against a ground. Science 218:587–589.

    PubMed  CAS  Google Scholar 

  • Wong E, Weisstein N (1983). Sharp targets are detected better against a figure, and blurred targets are detected better against a background. J. Exp. Psychol: Human Percept. Perform. 9:194–202.

    CAS  Google Scholar 

  • Wong E, Weisstein N (1984). Flicker induces depth: Spatial and temporal factors in the perceptual segregation of flickering and nonflickering regions in depth. Percept. Psychophys. 35:229–236.

    PubMed  CAS  Google Scholar 

  • Wong E, Weisstein N (1985). A new visual illusion: Flickering fields are localized in a depth plane behind nonflickering fields. Perception 14:13–17.

    PubMed  CAS  Google Scholar 

  • Wong E, Weisstein N (1987). The effects of flicker on the perception of figure and ground. Percept. Psychophys. 41:440–448.

    PubMed  CAS  Google Scholar 

  • Wong E, Weisstein N (1990a). Spatial frequency, perceived depth, and figure/ground perception. Vision Res. (in press).

    Google Scholar 

  • Wong E, Weisstein N (1990b). Time course of context effects on target discrimination: Studies of the object superiority and object-line effect in reaction time, speed/accuracy tradeoff and critical flicker fusion, (manuscript in prep.).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Maguire, W., Weisstein, N., Klymenko, V. (1990). From Visual Structure to Perceptual Function. In: Leibovic, K.N. (eds) Science of Vision. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3406-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3406-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7998-3

  • Online ISBN: 978-1-4612-3406-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics