The Investigation of Gravity Variations Near a Pumped-Storage Reservoir in North Wales

  • R. J. Edge
  • M. Oldham
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 103)


Continuous gravity measurements have been made for several months near the upper reservoir of the pumped-storage hydroelectricity scheme at Dinorwic, N Wales. A Lacoste and Romberg Earth Tide gravimeter, incorporating electrostatic feedback was installed 80 metres on the landward side of the reservoir and at a height of 10 metres above the maximum water level. Water level changes in excess of 30 metres were observed during the experiment involving the redistribution ~7.106 tonnes of water. A data set in excess of one month has been obtained and analysed in terms of the gravitational effects of the Earth’s body and ocean load tides in addition to the gravitational attraction due to the varying water level modelled according to Newtonian gravitational theory. The residual signal was examined in terms of non-Newtonian gravity and possible sources of systematic and random errors considered (e.g. uncertainty in lake geometry, gravimeter calibration and elastic properties of the local rock). The uncertainty in both the permeability and porosity of the rock in the vicinity of the gravimeter is found to be the dominant limiting factor in the overall accuracy of the experiment.


Ocean Tide Earth Tide Gravitational Attraction Tidal Gravity Landward Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelberger, E.G., Stubbs, C.W., Rogers, W.F., Raab, F.J., Heckel, B.R., Gundlach, J.H., Swanson, H.E., Watanabe, R. (1987). New constraints on composition-dependent interactions weaker than gravity, Phys. Rev. Lett., 59, 849–852CrossRefGoogle Scholar
  2. Baker, T.F. (1980). Tidal gravity in Britain: tidal loading and the spatial distribution of the marine tide, Geophys. J.R. Astron. Soc, 62, 249–267.Google Scholar
  3. Baker, T.F., Edge, R.J. and Jeffries, G. (1981). High precision tidal gravity, Scientific report to U.S. Air Force AFGL-TR-81-0339, 26pp.Google Scholar
  4. Baker, T.F., Edge, R.J. and Jeffries, G. (1989). European tidal gravity. Geophysical Research Letters (in press).Google Scholar
  5. Boynton, P.E., Crosby, D., Ekstrom, P., Szumilo, A. (1987). Search for an intermediate-range composition-dependent force, Phys. Rev. Lett., 59, 1385–1389.CrossRefGoogle Scholar
  6. Broucke, R.A., Zurn, W.E. and Slichter, L.B. (1972). Lunar tidal acceleration on a rigid Earth, Geophysics Monogr. Ser. AGU 16, 319–324.CrossRefGoogle Scholar
  7. Clarke, S.P. (Editor), (1966). Handbook of Physical constants. Memoir 97, Geological Soc. of America.Google Scholar
  8. Edge, R.J., Baker, T.F. and Jeffries, G. (1986). Improving the accuracy of tidal gravity measurements. In, Proc. 10th Int. Symp. on Earth Tides, Consejo Superior de Investigaciones Cientificas, Madrid, 213–219.Google Scholar
  9. Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., Aronson, S.H. (1986). Reanalysis of the Eotvos experiment. Phys. Rev. Lett., 36, 3–6.CrossRefGoogle Scholar
  10. Hsui, A.T. (1987). Borehole measurements of the Newtonian gravitational constant, Science, 237, 881–883.CrossRefGoogle Scholar
  11. Kanngieser, E., Kummer, K., Torge, W., Wenzel, H.-G. (1983). Das Gravimeter-Eichsystem Hannover, Wiss. Arb. d. Fachrichtg. Vermessungswesen d. Univ. Hannover, 120, 95p.Google Scholar
  12. Moore, G.I., Stacey, F.D., Tuck, G.J., Goodwin, B.D., Linthorne, N.P., Barton, M.A., Reid, D.M., Agnew, G.D. (1988). A determination of the gravitational constant at an effective mass separation of 22m, Phys. Rev. D, 38, 1023–1029.CrossRefGoogle Scholar
  13. Niebauer, T.M., McHugh, M.P., Faller, J.E. (1987). Galilean test for the fifth force, Phys. Rev. Lett., 59, 609–612.CrossRefGoogle Scholar
  14. Romaides, A.J., Jekeli, C., Lazarewicz, A.R., Eckhardt, D.H., Sands, R.W., (1989). A detection of non-Newtonian gravity, J. Geophys. Res., 94, 1563–1572.CrossRefGoogle Scholar
  15. Speake, C.C., Quinn, T.J. (1988). Search for a short-range, isopin-coupling component of the fifth force with use of a beam balance, Phys. Rev. Lett., 61, 1340–1343.CrossRefGoogle Scholar
  16. Stacey, F.D., Tuck, G.J., Moore, G.I., Holding, S.C., Goodwin, B.D., Zhou, R. (1987). Geophysics and the law of gravity, Rev. Mod. Phys., 59, 157–174.CrossRefGoogle Scholar
  17. Stubbs, C.W., Adelberger, E.G., Raab, F.J., Gundlach, J.H., Heckel, B.R., McMurry, K.D., Swanson, H.E., Watanabe, R. (1987). Search for an intermediate-range interaction, Phys. Rev. Lett., 58, 1070–1073.CrossRefGoogle Scholar
  18. Stubbs, C.W., Adelberger, E.G., Heckel, B.R., Rogers, W.F., Swanson, H.E., Watanabe, R., Gundlach, J.H., Raab, F.J. (1989). Limits on composition-dependent interactions using a laboratory source: is there a “fifth force” coupled to isopin?, Phys. Rev. Lett., 62, 609–612.CrossRefGoogle Scholar
  19. Thieberger, P. (1987). Search for a substance-dependent force with a new differential accelerometer, Phys. Rev. Lett., 58, 1066–1969.CrossRefGoogle Scholar
  20. Tuck, G.J., Barton, M.A., Agnew, G.D., Moore, G.I., Stacey, F.D. (1988). A lake experiment for measurement of the gravitational constant on a scale of tens of meters, (preprint).Google Scholar
  21. Zumberge, M.A., Ander, M.E., Lautzenhiser, T., Aiken, C.L.V., Parker, R.L., Ferguson, J.F., Gorman, M.R. (1988). Results from the 1987 Greenland G experiment, EOS Trans. Amer. Geoph. Union, 69, 1046.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • R. J. Edge
    • 1
  • M. Oldham
    • 2
  1. 1.Proudman Oceanographic LaboratoryBidston ObservatoryUK
  2. 2.School of PhysicsUniversity of Newcastle upon TyneUK

Personalised recommendations