Advertisement

Gravity Field of Phobos and its Long Term Variations

  • M. Burša
  • Z. Martinec
  • K. Pěč
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 103)

Abstract

The only information of the Phobos gravitational field is the data given by spacecrafts imaging the Phobos surface. The first detailed model of the Phobos boundary topography was established by Turner (197B), based on the Mariner 9 television pictures. Provided that Phobos is a homogeneous body, Sagitov et al. (1981), evaluated the Stokes parameters of the external gravitational field by numerical integration. An independent analytical approach by Martinec et al. (1989) using the spherical harmonic expansion of the Phobos topography checked the earlier results and, in fact, proved Sagitov’s (1981) results. Unfortunately, due to many possible shortcomings of the Turner’s globe, results by Sagitov et al. (1981), as well as, by Burša et al. (1988; cannot be used for the correct representation of the Phobos external gravitational field.

Keywords

Gravitational Field Stokes Parameter Spherical Harmonic Expansion Love Number Homogeneous Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bills, B. G. and Synnott, S. P. (1987). Planetary Geodesy. Rev. Geophys. 25, 833.CrossRefGoogle Scholar
  2. Burns, J. A. (1972). Dynamical characteristics of Phobos and Deimos. Rev. Geophys; 10, 463.CrossRefGoogle Scholar
  3. Burša, M. and Martinec, Z. and Pěč, K. (1988). Principal moments of inertia, secular Love number and origin of Phobos. Presented at XXVII CQSPAR — Espoo, Finland 1988.Google Scholar
  4. Duxbury, T. C. (1989). The figure of Phobos. Icarus 77, (in print).Google Scholar
  5. Duxbury, T. C. and Callahan, J. D. (1989). Phobos and Deimos control networks. Icarus 77, 275.CrossRefGoogle Scholar
  6. Martinec, Z. and Pěč, K. and Burša, M. (1989). The Phobos gravitational field modelled on the base of its topography. Earth, Moon and Planets, (in print).Google Scholar
  7. Sagitov, M. U. and Tadzhidinov, Kh. T. and Mikhajlov, B.O. (1981). Model gravitacionnogo polja Fobosa. Astron. vest. XV, 142.Google Scholar
  8. Sinclair, A. T. and Jones, D. H. P. and Williams, I. P. (1989). Secular acceleration of Phobos confirmed from positions obtained on La Palma. Mon. Not. R. astr. Soc. 237, 15.Google Scholar
  9. Turner, R. J. (1978). A model of Phobos. Icarus 33, 116.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • M. Burša
    • 1
  • Z. Martinec
    • 2
  • K. Pěč
    • 2
  1. 1.Astronomical InstituteCzechoslovak Academy of SciencesPraha 2Czechoslovakia
  2. 2.Charles UniversityPraha 8Czechoslovakia

Personalised recommendations