Skip to main content

Contributions to Mathematical Statistics

  • Chapter
A Statistical Model

Part of the book series: Springer Series in Statistics ((PSS))

  • 338 Accesses

Abstract

At Harvard professors get to choose their titles. Bill Cochran was Professor of Statistics; Art Dempster is Professor of Theoretical Statistics. Since the start of Harvard’s department, Frederick Mosteller has been Professor of Mathematical Statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J., Rogers, W.H., and Tukey, J.W. (1972). Robust Estimates of Location. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Atkinson, R.C., Bower, G.H., and Crothers, E.J. (1965). An Introduction to Mathematical Learning Theory. New York: Wiley.

    MATH  Google Scholar 

  • Bahadur, R.R. (1950). On a problem in the theory of k populations. Annals of Mathematical Statistics, 21, 362–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Balmer, D.W., Boulton, M., and Sack, R.A. (1974). Optimal solutions in parameter estimation problems for the Cauchy distribution. Journal of the American Statistical Association, 69, 238–242.

    Article  MathSciNet  MATH  Google Scholar 

  • Barnett, V. and Lewis, T. (1984). Outliers in Statistical Data. 2nd Ed. New York: Wiley.

    MATH  Google Scholar 

  • Barnsley, M.F., Ervin, V., Hardin, D.P., and Lancaster, J. (1986). Solution of an inverse problem for fractals and other sets. Proceedings of the National Academy of Sciences, 83, 1975–1977.

    Article  MathSciNet  MATH  Google Scholar 

  • Bechhofer, R.E. (1954). A single-sample multiple decision procedure for ranking means of normal populations with known variances. Annals of Mathematical Statistics, 25, 16–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Benson, F. (1949). A note on the estimation of mean and standard deviation from quantiles. Journal of the Royal Statistical Society, Series B, 11, 91–100.

    MATH  Google Scholar 

  • Billingsley, P. (1974). The probability theory of additive arithmetic functions. Annals of Probability, 2, 749–791.

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, D. (1966). A note on the estimation of the location parameter of the Cauchy distribution. Journal of the American Statistical Association, 61, 852–855.

    Article  MathSciNet  Google Scholar 

  • Bofinger, V.J. (1965). The k-sample slippage problem. Australian Journal of Statistics, 7, 20–31.

    Article  MathSciNet  Google Scholar 

  • Bougerol, P. and Lacroix, J. (1985). Products of Random Matrices with Applications to Schrödinger Operators. Boston: Birkhäuser.

    MATH  Google Scholar 

  • Bower, G.H. and Hilgard, E.R. (1981). Theories of Learning. 5th Ed. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Brown, B.M. (1981). Symmetric quantile averages and related estimators. Biometrika, 68, 235–242.

    Article  MathSciNet  Google Scholar 

  • Butler, R.W. (1981). The admissible Bayes character of subset selection techniques involved in variable selection, outlier detection, and slippage problems. Annals of Statistics, 9, 960–973.

    Article  MathSciNet  MATH  Google Scholar 

  • Cadwell, J.H. (1953). The distribution of quasi-ranges in samples from a normal population. Annals of Mathematical Statistics, 24, 603–613.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, L.K. and Chan, N.N. (1973). On the optimum best linear unbiased estimates of the parameters of the normal distribution based on selected order statistics. Skandinavisk Aktuarietidskrift, 1973, 120–128.

    MATH  Google Scholar 

  • Chan, L.K. and Rhodin, L. (1980). Robust estimation of location using optimally chosen sample quantiles. Technometrics, 22, 225–237.

    Article  MATH  Google Scholar 

  • Conover, W.J. (1968). Two k-sample slippage tests. Journal of the American Statistical Association, 63, 614–626.

    Article  Google Scholar 

  • Crow, E.L. and Siddiqui, M.M. (1967). Robust estimation of location. Journal of the American Statistical Association, 62, 353–389.

    Article  MathSciNet  Google Scholar 

  • David, H.A. (1981). Order Statistics. 2nd Ed. New York: Wiley.

    MATH  Google Scholar 

  • Demko, S., Hodges, L., and Naylor, B. (1985). Construction of fractal objects with iterated function systems. Computer Graphics, 19, No. 3, 271–278. (SIGGRAPH’85 Proceedings).

    Article  Google Scholar 

  • Diaconis, P. (1976). Asymptotic expansions for the mean and variance of the number of prime factors of a number n. Technical Report No. 96, Department of Statistics, Stanford University.

    Google Scholar 

  • Diaconis, P. (1980). Average running time of the fast Fourier transform. Journal of Algorithms, 1, 187–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Diaconis, P. and Shahshahani, M. Products of random matrices and computer image generation. In Random Matrices and Their Applications (Contemporary Mathematics, Vol. 50), edited by J.E. Cohen, H. Kesten, and CM. Newman. Providence, RI: American Mathematical Society, 1986. pp. 173–182.

    Google Scholar 

  • Dixon, W.J. (1957). Estimates of the mean and standard deviation of a normal population. Annals of Mathematical Statistics, 28, 806–809.

    Article  MathSciNet  MATH  Google Scholar 

  • Doornbos, R. (1966). Slippage tests. Mathematical Centre Tracts, No. 15, Mathematisch Centrum, Amsterdam.

    MATH  Google Scholar 

  • Doornbos, R. and Prins, H.J. (1956). Slippage tests for a set of gammavariates. Indagationes Mathematicae, 18, 329–337.

    MathSciNet  Google Scholar 

  • Doornbos, R. and Prins, H.J. (1958). On slippage tests. Indagationes Mathematicae, 20, 38–55

    MathSciNet  Google Scholar 

  • Doornbos, R. and Prins, H.J. (1958). On slippage tests. Indagationes Mathematicae, 20 438–447.

    MathSciNet  Google Scholar 

  • Dubey, S.D. (1967). Some percentile estimators for Weibull parameters. Technometrics, 9, 119–129.

    Article  MathSciNet  Google Scholar 

  • Dubins, L.E. and Freedman, D. (1966). Invariant probabilities for certain Markov processes. Annals of Mathematical Statistics, 37, 837–848.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunnett, C.W. (1960). On selecting the largest of k normal population means (with discussion). Journal of the Royal Statistical Society, Series B, 22, 1–40.

    MathSciNet  Google Scholar 

  • Elliott, P.D.T.A. (1979). Probabilistic Number Theory I: Mean-Value Theorems. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Elliott, P.D.T.A. (1980). Probabilistic Number Theory II: Central Limit Theorems. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Estes, W. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94–107.

    Article  Google Scholar 

  • Eubank, R.L. (1981). Estimation of the parameters and quantiles of the logistic distribution by linear functions of sample quantiles. Scandinavian Actuarial Journal, 1981, 229–236.

    MathSciNet  Google Scholar 

  • Ferguson, T.S. (1961). On the rejection of outliers. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, edited by J. Neyman. Berkeley and Los Angeles: University of California Press, 1961. pp. 253–287.

    Google Scholar 

  • Ferguson, T.S. (1989). Who solved the secretary problem? Statistical Science, 4, 282–296.

    Article  MathSciNet  Google Scholar 

  • Gallagher, P.X. (1976). On the distribution of primes in short intervals. Mathematika, 23, 4–9.

    Article  MathSciNet  MATH  Google Scholar 

  • Garsia, A. (1962). Arithmetic properties of Bernoulli convolutions. Transactions of the American Mathematical Society, 102, 469–482.

    Google Scholar 

  • Gastwirth, J.L. (1966). On robust procedures. Journal of the American Statistical Association, 61, 929–948.

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbons, J.D., Olkin, I., and Sobel, M. (1977). Selecting and Ordering Populations. New York: Wiley.

    MATH  Google Scholar 

  • Govindarajulu, Z. (1963). On moments of order statistics and quasi-ranges from normal populations. Annals of Mathematical Statistics, 34, 633–651.

    Article  MathSciNet  MATH  Google Scholar 

  • Grundy, P.M., Healy, M.J.R., and Rees, D.H. (1956). Economic choice of the amount of experimentation. Journal of the Royal Statistical Society, Series B, 18, 32–49.

    MathSciNet  Google Scholar 

  • Gupta, S.S. (1956). On a decision rule for a problem in ranking means. Ph.D. Thesis (Mimeo. Ser. No. 150). Inst, of Statist., Univ. of North Carolina, Chapel Hill.

    Google Scholar 

  • Gupta, S.S. (1965). On some multiple decision (selection and ranking) rules. Technometrics, 7, 225–245.

    Article  MATH  Google Scholar 

  • Gupta, S.S. and Huang, D.-Y. (1981). Multiple Statistical Decision Theory: Recent Developments. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Gupta, S.S. and Panchapakesan, S. (1979). Multiple Decision Procedures: Theory and Methodology of Selecting and Ranking Populations. New York: Wiley.

    MATH  Google Scholar 

  • Guttman, I. and Tiao, G.C. (1964). A Bayesian approach to some best population problems. Annals of Mathematical Statistics, 35, 825–835.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, I.J. and Kudo, A. (1968). On slippage tests. I. Annals of Mathematical Statistics, 39, 1693–1699.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, I.J. Kudo, A., and Yeh, N.C. (1968). On slippage tests. II. Annals of Mathematical Statistics, 39, 2029–2037.

    MathSciNet  MATH  Google Scholar 

  • Hall, R.R. (1982). On the distribution of square free numbers in short intervals. Mathematika, 29, 57–68.

    Article  Google Scholar 

  • Harter, H.L. (1959). The use of sample quasi-ranges in estimating population standard deviation. Annals of Mathematical Statistics, 30, 980–999. Correction: 31, 228.

    Article  MathSciNet  Google Scholar 

  • Hashemi-Parast, S.M. and Young, D.H. (1979). Distribution free slippage tests following a Lehmann model. Journal of Statistical Computation and Simulation, 8, 237–251.

    Article  MathSciNet  Google Scholar 

  • Hawkins, D.M. (1980). Identification of Outliers. London and New York: Chapman and Hall.

    MATH  Google Scholar 

  • Herkenrath, U., Kalin, D., and Vogel, W. (Eds.) (1983). Mathematical Learning Models—Theory and Algorithms. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Hull, C.L. (1952). A Behavior System. New Haven: Yale University Press.

    Google Scholar 

  • Iosifescu, M. and Theodorescu, R. (1969). Random Processes and Learning. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Joshi, S. and Sathe, Y.S. (1981). A k-sample slippage test for location parameter. Journal of Statistical Planning and Inference, 5, 93–98.

    Article  MathSciNet  MATH  Google Scholar 

  • Kac, M. (1959). Statistical Independence in Probability, Analysis and Number Theory. (Carus Mathematical Monograph 12, Mathematical Association of America). New York: Wiley.

    Google Scholar 

  • Kahneman, D., Slovic, P., and Tversky, A. (Eds.) (1982). Judgment under Uncertainty: Heuristics and Biases. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kaijser, T. (1978). A limit theorem for Markov chains in compact metric spaces with application to products of random matrices. Duke Mathematical Journal, 45, 311–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Kakiuchi, I. and Kimura, M. (1975). On slippage rank tests. I. Bulletin of Mathematical Statistics, 16, 55–71.

    MathSciNet  MATH  Google Scholar 

  • Kakiuchi, I., Kimura, M., and Yanagawa, T. (1977). On slippage rank tests. II. Bulletin of Mathematical Statistics, 17, 1–13.

    MathSciNet  MATH  Google Scholar 

  • Kapur, M.N. (1957). A property of the optimum solution suggested by Paulson for the k-sample slippage problem for the normal distribution. Indian Society of Agricultural Statistics, 9, 179–190.

    MathSciNet  Google Scholar 

  • Karlin, S. (1953). Some random walks arising in learning models I. Pacific Journal of Mathematics, 3, 725–756.

    MathSciNet  MATH  Google Scholar 

  • Karlin, S. and Truax, D. (1960). Slippage problems. Annals of Mathematical Statistics, 31, 296–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Kimura, M. (1984). The asymptotic efficiency of conditional slippage tests for exponential families. Statistics and Decisions, 2, 225–245.

    MathSciNet  MATH  Google Scholar 

  • Kudo, A. (1956). On the invariant multiple decision procedures. Bulletin of Mathematical Statistics, 6, 57–68.

    MathSciNet  MATH  Google Scholar 

  • Lakshmivarahan, S. (1981). Learning Algorithms: Theory and Applications. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Lee, K.R., Kapadia, C.H., and Hutcherson, D. (1982). Statistical properties of quasi-range in small samples from a gamma density. Communications in Statistics Part B—Simulation and Computation, 11, 175–195.

    Article  MATH  Google Scholar 

  • Miller, G.A. (1964). Mathematics and Psychology. New York: Wiley.

    MATH  Google Scholar 

  • Miller, R.G., Jr. (1981). Simultaneous Statistical Inference. 2nd Ed. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Mosteller, F. (1971). Fifty Challenging Problems in Probability with Solutions. Russian translation, pp. 23, [See B21 in Bibliography.]

    Google Scholar 

  • Mosteller, F. (1971). Fifty Challenging Problems in Probability with Solutions Russian translation, 98–101. [See B21 in Bibliography.]

    Google Scholar 

  • Neave, H.R. (1975). A quick and simple technique for general slippage problems. Journal of the American Statistical Association, 70, 721–726.

    Article  MathSciNet  MATH  Google Scholar 

  • Norman, M.F. (1972). Markov Processes and Learning Models. New York: Academic Press.

    MATH  Google Scholar 

  • Norman, M.F. and Yellott, J.I., Jr. (1966). Probability matching. Psychometrika, 31, 43–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogawa, J. (1951). Contributions to the theory of systematic statistics, I. Osaka Journal of Mathematics, 3, 175–213.

    Google Scholar 

  • Paulson, E. (1952a). On the comparison of several experimental categories with a control. Annals of Mathematical Statistics, 23, 239–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Paulson, E. (1952b). An optimum solution to the k-sample slippage problem for the normal distribution. Annals of Mathematical Statistics, 23, 610–616.

    Article  MathSciNet  MATH  Google Scholar 

  • Paulson, E. A non-parametric solution for the k-sample slippage problem. In Studies in Item Analysis and Prediction, edited by H. Solomon. Stanford, CA: Stanford University Press, 1961. pp. 233–238.

    Google Scholar 

  • Paulson, E. (1962). A sequential procedure for comparing several experimental categories with a standard or control. Annals of Mathematical Statistics, 33, 438–443.

    Article  MathSciNet  MATH  Google Scholar 

  • Pfanzagl, J. (1959). Ein kombiniertes test und klassifikations-problem. Metrika, 2, 11–45.

    Article  MathSciNet  Google Scholar 

  • Ramachandran, K.V. and Khatri, C.G. (1957). On a decision procedure based on the Tukey statistic. Annals of Mathematical Statistics, 28, 802–806.

    Article  MathSciNet  MATH  Google Scholar 

  • Rejali, A. (1978). On the asymptotic expansions for the moments and the limiting distributions of some additive arithmetic functions. Ph.D. dissertation, Department of Statistics, Stanford University.

    Google Scholar 

  • Roberts, C.D. (1963). An asymptotically optimal sequential design for comparing several experimental categories with a control. Annals of Mathematical Statistics, 34, 1486–1493.

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, C.D. (1964). An asymptotically optimal fixed sample size procedure for comparing several experimental categories with a control. Annals of Mathematical Statistics, 35, 1571–1575.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarhan, A.E. and Greenberg, B.G. (Eds.). (1962). Contributions to Order Statistics. New York: Wiley.

    MATH  Google Scholar 

  • Schwager, S.J. Mean slippage problems. In Encyclopedia of Statistical Sciences, Vol. 5, edited by S. Kotz and N.L. Johnson. New York: Wiley, 1985. pp. 372–375.

    Google Scholar 

  • Somerville, P.N. (1954). Some problems of optimum sampling. Biometrika, 41, 420–429.

    MathSciNet  MATH  Google Scholar 

  • Somerville, P.N. (1970). Optimum sample size for a problem in choosing the population with the largest mean. Journal of the American. Statistical Association, 65, 763–775.

    Article  MATH  Google Scholar 

  • Srivastava, M.S. (1973). The performance of a sequential procedure for a slippage problem. Journal of the Royal Statistical Society, Series B, 35, 97–103.

    MATH  Google Scholar 

  • Stein, C (1981). The variance of the number of square-free numbers in a random interval. Technical Report, Department of Statistics, Stanford University.

    Google Scholar 

  • Thurstone, L.L. (1919). The learning curve equation. Psychological Monographs, 26, No. 3.

    Google Scholar 

  • Truax, D.R. (1953). An optimum slippage test for the variances of k normal distributions. Annals of Mathematical Statistics, 24, 669–674.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Diaconis, P., Lehmann, E. (1990). Contributions to Mathematical Statistics. In: Fienberg, S.E., Hoaglin, D.C., Kruskal, W.H., Tanur, J.M. (eds) A Statistical Model. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3384-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3384-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7992-1

  • Online ISBN: 978-1-4612-3384-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics