Skip to main content

Approaches to Bacterial Population Dynamics

  • Chapter

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Studies on the structure of phyto- and zooplankton communities have been numerous in aquatic ecology. They have contributed considerably to our knowledge of species composition, genetic population structure, and environmental factors regulating local, spatial, and temporal variability. However, our knowledge of the structure of the indigenous bacterial flora that participates in the flux of matter in aquatic ecosystems is scarce. This may be partly because identification of bacterial species is very laborious and often still uncertain. Today, due to the development of modern molecular (nucleic acid homology, RNA sequencing, RNA probing) and immunological techniques (genus- and species-specific fluorescent antibodies, monoclonal antibodies), solutions to these problems may be anticipated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtman, M. and Pluschke, G. 1986. Clonal analysis of descent and virulence among selected Escherichia coli. Annual Review of Microbiology 40: 185–210. Albertson, N.H.

    CAS  Google Scholar 

  • Jones, G.W., and Kjelleberg S. 1987. The detection of starvation-specific antigens in two marine bacteria. Journal of General Microbiology 133: 2225- 2231.

    Google Scholar 

  • Amy, P.S. and Morita, R.Y. 1983. Protein patterns of growing and starved cells of a marine Vibrio sp. Applied and Environmental Microbiology 45: 1748–1752.

    PubMed  CAS  Google Scholar 

  • Amy, P.S. and Hiatt, H.D. 1989. Survival and detection of bacteria in an aquatic environment. Applied and Environmental Microbiology 55: 788–793.

    PubMed  CAS  Google Scholar 

  • Anderberg, M.R. 1973. Cluster Analysis for Applications. Academic Press, London.

    Google Scholar 

  • Arredondo, R. and Jerez, C.A. 1989. Specific dot-immunobinding for detection and enumeration of Thiobacillus ferrooxidans. Applied and Environmental Microbiology 55: 2025–2029.

    PubMed  CAS  Google Scholar 

  • Austin, B. and Colwell, R.R. 1977. Evaluation of some coefficients for use in numerical taxonomy of microorganisms. International Journal of Systematic Bacteriology 27: 204–210.

    Google Scholar 

  • Baker, D., Lending, C., and Dean, D. 1984. Localization of nitrogenase using monoclonal antibodies, pp. 249 in Veeger, C. and Newton, W.E. (editors), Advances in Nitrogen Fixation Research. Nijhoff/Dr. W. Junk Publ., The Hague.

    Google Scholar 

  • Baker, K.H. and Mills, A.L. 1982. Determination of the number of respiring Thiobacillus ferrooxidans cells in water samples by using combined fluorescent antibody 2-(p- iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride staining. Applied and Environmental Microbiology 43: 338–344.

    PubMed  CAS  Google Scholar 

  • Bale, M.J, Fry, J.C., and Day, M.J. 1987. Plasmid transfer between strains of Pseudomonas aeruginosa on membrane filters attached to river stones. Journal of General Microbiology 133: 3099–3107.

    PubMed  CAS  Google Scholar 

  • Barkay, T., Fouts, D.L., and Olson, B.H. 1985. Preparation of a DNA gene probe for detection of mercury resistance genes in Gram-negative bacterial communities. Applied and Environmental Microbiology 49: 686–692.

    PubMed  CAS  Google Scholar 

  • Barkay, T., Iiebert, C., and Gillman, M. 1989. Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance. Applied and Environmental Microbiology 55: 1574–1577.

    PubMed  CAS  Google Scholar 

  • Beacham, I.R. 1987. Silent genes in procaryotes. Federation of European Microbiological Societies, Microbiology Reviews 46: 409–417.

    CAS  Google Scholar 

  • Bell, C.R., Holder-Franklin, M.A., and Franklin, M. 1982a. Correlations between predominant heterotrophic bacteria and physicochemical water quality parameters in two Canadian rivers. Applied and Environmental Microbiology 43: 269–283.

    PubMed  CAS  Google Scholar 

  • Bell, C.R., Holder-Franklin, M.A., and Franklin, M. 1982b. Seasonal fluctuations in river bacteria as measured by multivariate statistical analysis of continuous cultures. Canadian Journal of Microbiology 28: 959–975.

    PubMed  CAS  Google Scholar 

  • Belser, W.W. and Schmidt, E.L. 1978. Serological diversity within a terrestrial ammonia-oxidizing population. Applied and Environmental Microbiology 36: 589–593.

    PubMed  CAS  Google Scholar 

  • Beltran, P., Musser, J., Helmuth, R., Farmer J.H.III., Frerichs, W.M., Wachsmuth, I.K, Ferris, K., McWorther, A.C., Wells, J.G., Cravioto, A., and Selander, R.K. 1988. Toward a population genetic analysis of Salmonella: Genetic diversity and relationships among strains of serotypes Salmonella choleraesuis, S. derby, S. dublin, S. en- teritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proceedings of the National Academy of Sciences, USA 85: 7753–7757.

    CAS  Google Scholar 

  • Bergh, O, Borsheim, K.Y., Bratbak, G., and Heldal, M. 1989. High abundance of viruses found in aquatic environments. Nature 340: 467–468.

    PubMed  CAS  Google Scholar 

  • Bohlool, B.B. and Schmidt, E.L. 1980. The immunofluorescence approach in microbial ecology. Advances in Microbial Ecology 4: 203–241.

    Google Scholar 

  • Boye, E., Steen, H.B., and Skarstad, K. 1983. How cytometry of bacteria: a promising tool in experimental and clinical microbiology. Journal of General Microbiology 129: 973–980.

    PubMed  CAS  Google Scholar 

  • Brayton, P.R. and Colwell, R.R. 1987. Fluorescent antibody staining method for enumeration of viable environmental Vibrio cholerae O1. Journal of Microbiological Methods 6: 309–314.

    Google Scholar 

  • Brooks, W.P. and Codd, G.A. 1988. Immunoassay of hepatotoxic cultures and water blooms of cyanobacteria using Microcystis aeruginosa peptide toxin polyclonal antibodies.Environmental Technology Letters 9: 1343–1348.

    CAS  Google Scholar 

  • Buth, D.G. 1984. The application of electrophoretic data in systematic studies. Annual Review of Ecology and Systematics 15: 501–522.

    Google Scholar 

  • Caugant, D.A., Levin, B.R., and Selander, R.K. 1981. Genetic diversity and temporal variation in the E. coli population of a human host.Genetics 98: 467–490.

    PubMed  CAS  Google Scholar 

  • Caugant, D.A., Levin, B.R., and Selander, R.K. 1984. Distribution of multilocus genotypes of Escherichia coli within and between host families. Journal of Hygiene 92: 377–384.

    PubMed  CAS  Google Scholar 

  • Caugant, D.A., Froholm, L.O., Bovre, K., Holten, E. Frasch, C.E., Mocca, L.F., Zollinger, W.D., and Selander, R.K. 1986. Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proceedings of the National Academy of Sciences, USA 83: 4927–4931.

    CAS  Google Scholar 

  • Chao, L. and Cox, E.C. 1983. Competition between high and low mutating strains of Escherichia coli. Evolution 37: 125–134.

    Google Scholar 

  • Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiological Reviews 45: 316–354.

    PubMed  CAS  Google Scholar 

  • Colwell, R.R., Brayton, P.R., Grimes, D.J., Roszak, D.B., Huq, S.A., and Palmer, L.M. 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Biotechnology 3: 817–820.

    Google Scholar 

  • Conway de Macario, E. and Macario A.J.L. 1986. Immunology of archaebacteria: Identification, antigenic relationships and immunochemistry of surface structures. Systematic and Applied Microbiology 7: 320–324.

    CAS  Google Scholar 

  • Conway de Macario, E., Wolin, M.J., and Macario, A.J.L. 1982. Antibody analysis of relationships among methanogenic bacteria. Journal of Bacteriology 149: 316–319.

    PubMed  CAS  Google Scholar 

  • Conway de Macario, E., Macario, A.J.L., and Jovell, R.J. 1983a. Quantitative slide micro- immunoenzymatic assay (micro-SIA) for antibodies to particulate and non-parti- culate antigens. Journal of Immunological Methods 59: 39–47.

    PubMed  CAS  Google Scholar 

  • Conway de Macario, E., Macario, A.J.L., Magarinos, M.C., König, H., and Kandler, O, 1983b. Dissecting the antigenic mosaic of the archaebacterium Methanobacterium thermoautotrophicum by monoclonal antibodies of defined molecular specificity. Proceedings of the National Academy of Sciences, USA 80: 6346–6350.

    CAS  Google Scholar 

  • Conway de Macario, E., König, H., and Macario, A.J.L. 1986. Antigenic determinants distinctive of Methanospirillum hungatei and Methanogenium cariaci identified by monoclonal antibodies. Archives of Microbiology 144: 20–24.

    CAS  Google Scholar 

  • Cooper, N.S., Brown, M.E., and Caulcott, C.A. 1987. A mathematical method for analyzing plasmid stability in micro-organisms. Journal of General Microbiology 133: 1871–1880.

    PubMed  CAS  Google Scholar 

  • Costas, M„ Leach, R.H., and Mitchelmore, D.L. 1987. Numerical analysis of PAGE protein patterns and the taxonomic relationship within the “Mycoplasma mycoides Cluster”. Journal of General Microbiology 133: 3319–3329.

    PubMed  CAS  Google Scholar 

  • Cox, E.C. and Gibson, T.C. 1974. Selection for high mutation rates in chemostats. Genetics 77: 169–184.

    PubMed  CAS  Google Scholar 

  • Currin, C.A., Paerl, H.W., Suba, G.K. and Alberte, R.S. 1989. Immunofluorescent detection and characterization of N2-fixing microorganisms from aquatic environments. Limnology and Oceanography (in press).

    Google Scholar 

  • Darland, G. 1975. Principal component analysis of infraspecific variation in bacteria. Applied Microbiology 30: 282–289.

    PubMed  CAS  Google Scholar 

  • Debette, J. and Prensier, G. 1989. Immunoelectron microscopic demonstration of an esterase on the outer membrane of Xanthomonas maltophila. Applied and Environmental Microbiology 55: 233–239.

    PubMed  CAS  Google Scholar 

  • DeFlaun, M.F., Paul, J.H., and Jeffrey, W.H. 1987. Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Marine Ecology Progress Series 38: 65–73.

    CAS  Google Scholar 

  • DeLong, E.F., Wickham, G.S., and Pace, N.R. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363.

    PubMed  CAS  Google Scholar 

  • Denny, T.P., Gilmour, M.N., and Selander, R.K. 1988. Genetic diversity and relationships of two pathovars of Pseudomonas syringae. Journal of General Microbiology 134: 1949–1960.

    PubMed  CAS  Google Scholar 

  • Diez, J. and Lopez-Rutz, A. 1989. Immunological approach to the regulation of nitrate reductase in Monoraphidium braunii. Archives of Biochemistry and Biophysics 268: 707–715.

    PubMed  CAS  Google Scholar 

  • Drake, J.W. 1974. The role of mutation in microbial evolution, pp. 41–58 in Carlile, M.J. and Skehel, J.J. (editors), Evolution in the Microbial World. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fliermans, C.B. and Schmidt, E.L. 1975. Autoradiography and immunofluorescence combined for autecological study of single cell activity with Citrobacter as model system. Applied Microbiology 30: 676–684.

    PubMed  CAS  Google Scholar 

  • Freter, R., Freter, R.R., and Brickner, H. 1983. Experimental and mathematical models of Escherichia coli plasmid transfer in vitro and in vivo. Infection and Immunity 39: 60–84.

    PubMed  CAS  Google Scholar 

  • Fukami, K., Ohara, S., Ishida, Y., and Mariazzi, A.A. 1988. A modified MPN method for counting oligotrophic bacteria by using naturally occurring organics. Nippon Suisan Gakkaishi 54: 1659–1663.

    Google Scholar 

  • Gerberding, H. and Mayer, F. 1988. Localization of the membrane-bound hydrogenase in Alcaligenes eutrophus by electron microscopic immunocytochemistry. Federation of European Microbiological Societies, Microbiology Letters 50: 265–270.

    CAS  Google Scholar 

  • Giovannoni, S.J., DeLong, E.F., Olsen, G.J., and Pace, N.R. 1988. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. Journal of Bacteriology 170: 720–726.

    PubMed  CAS  Google Scholar 

  • Goodfellow, M. and Dickinson, C.H. 1985. Delineation and description of microbial populations using numerical methods, pp. 165–225 in Goodfellow M., Jones D., and Priest, F.G (editors), Computer-Assisted Bacterial Systematics. Academic Press, London.

    Google Scholar 

  • Goodfellow, M., Jones, D., and Priest, F.G. (editors) 1985. Computer-Assisted Bacterial Systematics. Academic Press, London.

    Google Scholar 

  • Graham, J.B. and Istock, C.A. 1978. Genetic exchange in Bacillus subtilis in soil. Molecular and General Genetics 166: 287–290.

    PubMed  CAS  Google Scholar 

  • Groat, R.G. and Matin, A. 1986. Synthesis of unique proteins at the onset of carbon starvation in Escherichia coli. Journal of Industrial Microbiology 1: 69–73.

    CAS  Google Scholar 

  • Gyllenberg, H. 1984. Automated identification of bacteria: An overview and examples, pp. 329–339 in Bergan, T. (editor), Methods in Microbiology, vol. 16, Academic Press, London.

    Google Scholar 

  • Hall, B.G., Yokoyama, S., and Calhoun, D.H. 1983. Role of cryptic genes in microbial evolution.Molecular Biology and Evolution 1: 109–124.

    PubMed  CAS  Google Scholar 

  • Harder, W., Kuenen, J.G., and Matin, A.A. 1977. Microbial selection in continuous culture—a review. Journal of Applied Bacteriology 43: 1–24.

    PubMed  CAS  Google Scholar 

  • Harris, H. 1983. Applications of monoclonal antibodies in enzyme genetics. Annual Review of Genetics 17: 279–314.

    PubMed  CAS  Google Scholar 

  • Hartl, D.L. and Dykhuizen, D.E. 1984. The population genetics of Escherichia coli. Annual Review of Genetics 18: 31–68.

    PubMed  CAS  Google Scholar 

  • Harwood, C.R. 1980. Plasmids, pp. 27–53 in Goodfellow, M. and Board, R.G. (editors), Microbiological Classification and Identification. Academic Press, London.

    Google Scholar 

  • Hawkes, R., Niday, E., and Gordon, J. 1982. A dot-immunobinding assay for monoclonal and other antibodies. Analytical Biochemistry 119: 142–147.

    PubMed  CAS  Google Scholar 

  • Hirsch, P. and Rades-Rohkohl, E. 1983. Microbial diversity in a groundwater aquifer in Northern Germany. Developments in Industrial Microbiology 24: 183–200.

    Google Scholar 

  • Hoff, K.A. 1988. Rapid and simple method for double staining of bacteria with 4’,6- diamidino-phenylindole and fluorescein isothiocyanate-labeled antibodies. Applied and Environmental Microbiology 54: 2949–2952.

    PubMed  CAS  Google Scholar 

  • Holben, W. and Tiedje, J.M. 1988. Applications of nucleic acid hybridization in microbial ecology. Ecology 69: 561–568.

    CAS  Google Scholar 

  • Holben, W., Jansson, J.K., Chelm, B.K., and Tiedje, J.M. 1988. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Applied and Environmental Microbiology 54: 703–711.

    PubMed  CAS  Google Scholar 

  • Holder-Franklin, M.A. 1981. The development of biological and mathematical methods to study population shifts in aquatic bacteria in response to environmental change. Scientific Series No. 124. Inland Water Directorate, Department of Environment, Ottawa.

    Google Scholar 

  • Holder-Franklin, M.A. and Wuest, L.J. 1983. Population dynamics of aquatic bacteria in relation to environmental change as measured by factor analysis. Journal of Microbiological Methods 1: 209–227.

    Google Scholar 

  • Holder-Franklin, M.A., Franklin, M., Cashion, P., Cormier, C., and Wuest, L. 1978. Population shifts in heterotrophic bacteria in a tributary of the Saint John River as measured by taxometrics. pp. 44–50 in Loutit, M.W. and Miles, J.A.R. (editors), Microbial Ecology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Holder-Franklin, M.A., Franklin, M., and Kaneko, T. 1988. Continuity of main stream river bacteria demonstrated by factor analysis, Internationale Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 23: 1846–1854.

    Google Scholar 

  • Holloway, B.W. 1979. Plasmids that mobilize bacterial chromosome. Plasmid 2: 1–19.

    PubMed  CAS  Google Scholar 

  • Howgrave-Graham, A.R. and Steyn, P. 1988. Application of the fluorescent-antibody technique for the detection of Sphaerotilus natans in activated sludge. Applied and Environmental Microbiology 54: 799–802.

    PubMed  Google Scholar 

  • Jayne-Williams, D.J. 1975. Miniaturized methods for the characterization of bacterial isolates. Journal of Applied Bacteriology 38: 305–309.

    PubMed  CAS  Google Scholar 

  • Johnson, J.L. 1984. Nucleic acids in bacterial classification, pp. 8–11 in N.R. Krieg (editor), Bergey’s Manual of Systematic Bacteriology, vol. 1. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Josserand, A. and Cleyet-Marel, J.C. 1979. Isolation from soils of Nitrobacter and evidence for novel serotypes using immunofluorescence. Microbial Ecology 5:197–205.

    Google Scholar 

  • Kemp, A.H., Morgan, M.R.A., and Archer, D.B. 1986. Enzyme-linked immunosorbent assay for methanogens using polyclonal and monoclonal antibodies, pp. 39–49 in Schiedam, B.V. (editor), Anaerobic Treatment: A Grown-Up Technology. Aquatech 86. Industrial Presentations (Europe). The Netherlands.

    Google Scholar 

  • Kersters, K. and DeLey, J. 1980. Classification and identification of bacteria by electrophoresis of their proteins, pp. 273–297 in Goodfellow, M. and Board, R.G. (editors), Microbiological Classification and Identification. Academic Press, London.

    Google Scholar 

  • Kogure, K., Simidu, U., and Taga, N. 1979. A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology 25: 415–420.

    PubMed  CAS  Google Scholar 

  • Krambeck, H.J. and Witzel, K.-P. 1983. Classification of aquatic bacterial strains: An example of numerical taxonomy in limnology. EDV in Medizin und Biologie 14: 45- 49.

    Google Scholar 

  • Kuznetsov, S.I., Dubinina, G.A., and Lapteva, N.A. 1979. Biology of oligotrophic bacteria. Annual Review of Microbiology 33: 377–387.

    PubMed  CAS  Google Scholar 

  • Lammers, W.T. 1990. Bacterial hosts of bacteriophage isolated from river sediment. Internationale Vereiningung für Theoretische und Angewandte Limnologie, Verhandlungen 24: (in press)

    Google Scholar 

  • Lechevalier, M.P. 1977. Lipids in bacterial taxonomy—a taxonomist’s view. Critical Reviews in Microbiology 5: 109–210.

    PubMed  CAS  Google Scholar 

  • Levin, B.R. 1981. Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99: 1–23.

    PubMed  CAS  Google Scholar 

  • Lewontin, R.C. 1985. Population genetics. Annual Review of Genetics 19: 81–102.

    PubMed  CAS  Google Scholar 

  • Lorenz, M. 1988. Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. Journal of General Microbiology 134: 107–112.

    PubMed  CAS  Google Scholar 

  • Macario, A.J.L. and Conway de Macario, E. 1983. Antigenic fingerprinting of meth-anogenic bacteria with polyclonal antibody probes. Systematic and Applied Microbiology 4: 451–458.

    Google Scholar 

  • Macario, A.J.L. and Conway de Macario, E. 1985a. Monoclonal antibodies of defined molecular specificity for identification and classification of methanogens and for probing their ecologic niches, pp. 213–247 in Macario, A.J.L. and Conway de Macario, E. (editors), Monoclonal Antibodies Against Bacteria, vol. 2. Academic Press, London.

    Google Scholar 

  • Macario, A.J.L. and Conway de Macario, E. 1985b. Antibodies for methanogenic biotechnology. Trends in Biotechnology 3: 204–208.

    CAS  Google Scholar 

  • Macario, A.J.L. and Conway de Macario, E. 1986. Methanogens in digestors: Identification and quantification in microsamples by direct testing with antibody probes. Pp. 1009–1020 in Energy from Biomass and Wastes. Institute of Gas Technology, Chicago, Illinois. Elsevier Applied Science Publishers Ltd., Barking, Essex, England.

    Google Scholar 

  • Macario, A.J.L. and Conway de Macario, E. 1988. Quantitative immunologic analysis of the methanogenic flora of digestors reveals a considerable diversity. Applied and Environmental Microbiology 54: 79–86.

    PubMed  CAS  Google Scholar 

  • Maruyama, T. and Kimura, M. 1980. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proceedings of the National Academy of Sciences, USA 77: 6710–6714.

    CAS  Google Scholar 

  • Marxsen, J. and Moaledj, K. 1988. On the structure of bacterial communities in a Central European open grassland stream, the Breitenbach. Internationale Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 23: 1855–1860.

    Google Scholar 

  • Mercer A.A., Morelli, G., Heuzenroeder, M., Kamke, M., and Achtman, M. 1984. Conservation of plasmids among Escherichia coli Kl isolates of diverse origins. Infection and Immunity 46: 649–657.

    PubMed  CAS  Google Scholar 

  • Meyer, R., Hinds, M., and Brasch, M. 1982. Properties of R1162, a broad-host-range, high copy number plasmid. Journal of Bacteriology 150: 552–562.

    PubMed  CAS  Google Scholar 

  • Milkman, R. 1973. Electrophoretic variation in Escherichia coli from natural sources. Science 182: 1024–1026.

    PubMed  CAS  Google Scholar 

  • Minas, W., Sahar, E., and Gutnick, D. 1988. Flow cytometric screening and isolation of Escherichia coli clones which express surface antigens of the oil-degrading microorganismAcinetobacter calcoaceticus RAG-1.Archives of Microbiology 150: 432–437.

    PubMed  CAS  Google Scholar 

  • Moaledj, K. 1984. Über schnelle miniaturisierte Bestimmungsverfahren für Bakterienpopulationen in aquatischen Ökosystemen. Archiv für Hydrobiologie 100: 99–121.

    Google Scholar 

  • Müller, U. and Sengbusch, P. 1983. Interactions of species in Anabaena flos-aquae association from Plußsee (East Holstein, Federal Republic of Germany). Oecologia 58: 215–219.

    Google Scholar 

  • Muirhead, K.A., Horan, P.K., and Poste, G. 1985. Flow cytometry: present and future. Biotechnology 3: 337–356.

    CAS  Google Scholar 

  • Murry, M.A. and Benemann, J.R. 1980. Localization of nitrogenase in a heterocystous blue-green alga by immunoferritin labeling.Journal of Phycology, Supplement 16: Abstr. 109.

    Google Scholar 

  • Musser, J.M., Granoff, D.M. Pattison P.E., and Selander, R.K. 1985. A population genetic framework for the study of invasive diseases caused by serotype b strains of Haemophilus influenzae. Proceedings of the National Academy of Sciences, USA 82: 5078–5082.

    CAS  Google Scholar 

  • Musser, J.M., Barenkamp, S.J., Granoff, D.M., and Seiander, R.K. 1986a. Genetic relationships of serologically nontypable and serotype b strains of Haemophilus influenzae. Infection and Immunity 52: 183–191.

    PubMed  CAS  Google Scholar 

  • Musser, J.M., Hewlett, E.L., Peppier, M.S., and Selander, R.K. 1986b. Genetic diversity and relationships in populations of Bordetella spp. Journal of Bacteriology 166: 230–237.

    PubMed  CAS  Google Scholar 

  • Muyzer, G., de Koster, S., van Zijl, Y., Boon, J.J., and Westbroek, P. 1986. Immunologic studies on microbial mats from Solar Lake (Sinai)—a contribution to the organic geochemistry of sediments. Organic Geochemistry 10: 697–704.

    CAS  Google Scholar 

  • Muyzer, G., de Bruyn, A.C., Schmedding, D.J.M., Bos, P., Westbroek, P., and Kuenen, G.J. 1987. A combined immunofiuorescence-DNA-fluorescence staining technique for enumeration ofThiobacillus ferrooxidans in a population of acidophilic bacteria. Applied and Environmental Microbiology 53: 660–664.

    PubMed  CAS  Google Scholar 

  • Nei, M. 1975. Molecular Population Genetics and Evolution. Elsevier/North-Holland Publ. Comp. Amsterdam.

    Google Scholar 

  • Nei, M. and Li W.-H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA 76: 5269–5273.

    CAS  Google Scholar 

  • Neidhardt, F.C., Vaughn, V., Phillips, T.A., and Bloch, P.L. 1983. Gene-protein index of Escherichia coli K12. Microbiological Reviews 47: 231–284.

    PubMed  CAS  Google Scholar 

  • Nestman, E.R. and Hill, R.F. 1973. Population changes in continuously growing mutator cultures of Escherichia coli. Genetics, Supplement 73: 41–44.

    Google Scholar 

  • O’Brien, M. and Colwell, R. 1987. Characterization tests for numerical taxonomy studies. pp. 69–104 in Colwell, R.R. and Grigorova, R. (editors), Methods in Microbiology, vol. 19, Academic Press, London.

    Google Scholar 

  • Ochman, H. and Selander, R.K. 1984. Evidence for clonal population structure in Escherichia coli. Proceedings of the National Academy of Sciences, USA 81: 198–201.

    CAS  Google Scholar 

  • Ochman, H., Whittam, T.S., Caugant, D.A., and Selander, R.K. 1983. Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. Journal of General Microbiology 129: 2715–2726.

    PubMed  CAS  Google Scholar 

  • Ohta, 1982. Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proceedings of the National Academy of Sciences, USA 79: 1940–1944.

    CAS  Google Scholar 

  • Ohta, T. 1983. Theoretical study of the accumulation of selfish DNA. Genetical Research 41: 1–15.

    PubMed  CAS  Google Scholar 

  • Olsen, G.J., Lane, D.J., Giovannoni, S.J., and Pace, N.R. 1986. Microbial ecology and evolution: A ribosomal RNA approach.Annual Review of Microbiology 40: 337–365.

    PubMed  CAS  Google Scholar 

  • Olson, R.J., Frankel, S.L., and Chrisholm, S.W. 1983. An inexpensive flow cytometer for the analysis of fluorescence signals in phytoplankton: chlorophyll and DNA distributions.Journal of Experimental Marine Biology and Ecology 68: 129–144.

    CAS  Google Scholar 

  • Overbeck, J. 1974. Microbiology and biochemistry. Internationale Vereinigung für Theoretische und Angewandte Limnologie, Mitteilungen 20:198–228.

    Google Scholar 

  • Pace, N.R., Stahl, D.A., Lane, D.J., and Olsen, G.J. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology 9: 1–55.

    CAS  Google Scholar 

  • Paul, J.H. and Carlson, D.J. 1984. Genetic material in the marine environment: implication for bacterial DNA. Limnology and Oceanography 29: 1091–1097.

    CAS  Google Scholar 

  • Pettigrew, C.A. and Sayler, G.S. 1986. The use of DNA:DNA colony hybridization in the rapid isolation of 4-chlorobiphenyl degradative bacterial phenotypes. Journal of Microbiological Methods 5: 205–213.

    CAS  Google Scholar 

  • Phillips, A.P. and Martin, K.L. 1988. Investigation of spore surface antigens in the genus Bacillus by the use of polyclonal antibodies in immunofluorescence tests. Journal of Applied Bacteriology 64: 47–55.

    PubMed  CAS  Google Scholar 

  • Prensier, G., Dubourguier, H.C., Thomas, I. Albagnac, G., and Buisson, M.N. 1988. Specific immunological probes for studying the bacterial associations in granules and biofilms. pp. 55–61 in Lettinga, G., Zehnder, A.J.B., Grotenhuis, J.T.C., and Hulshoff Pol, L.W. (editors), Granular Anaerobic Sludge: Microbiology and Technology. Pudoc, Wageningen.

    Google Scholar 

  • Proctor, L.M. and Fuhrman, J.A. 1990. Viral mortality of marine bacteria and cyano-bacteria. Nature 343: 60–62.

    Google Scholar 

  • Ramshaw, J.A.M., Coyne, J.A., and Lewontin, R.C. 1979. The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics 93: 1019–1037.

    PubMed  CAS  Google Scholar 

  • Rasumov, A.S. 1932. Die direkte Methode der Zählung der Bakterien im Wasser und ihre Vergleichung mit der Koch’schen Plattenkultur-Methode. Microbiology 1: 145.

    Google Scholar 

  • Reanney, D.C. 1977. Genetic engineering as an adaptive strategy.Brookhaven Symposia in Biology. Genetic Interaction and Gene Transfer 29: 248–271.

    Google Scholar 

  • Reanney, D.C., Gowland, P.C., and Slater, J.H. 1983. Genetic interactions among microbial communities, pp. 379–421 in Slater, J.H., Whittenbury, R., and Wimpenny, J.W.T. (editors), Microbes in their Natural Environments. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reed, W.M. and Dugan, P.R. 1978. Distribution of Methylomonas methanica and Meth- ylosinus trichosporium in Cleveland Harbor as determined by an indirect fluorescent antibody-membrane filter technique. Applied and Environmental Microbiology 35: 422–430.

    PubMed  CAS  Google Scholar 

  • Rennie, R.J. and Schmidt, E.L. 1977. Immunofluorescence studies of Nitrobacter populations in soils. Canadian Journal of Microbiology 23: 1011–1017.

    PubMed  CAS  Google Scholar 

  • Ren wick, A. and Gareth, D. 1985. A comparison of the fluorescent ELISA and antibiotic resistance identification techniques for use in ecological experiments with Rhizobium trifolii. Journal of Applied Bacteriology 58: 199–206.

    CAS  Google Scholar 

  • Rivkin, R.B., Phinney, D.A., and Yentsch, C.M. 1986. Effects of flow cytometric analysis and cell sorting on photosynthetic carbon uptake by phytoplankton in cultures and from natural populations. Applied and Environmental Microbiology 52: 935–938.

    PubMed  CAS  Google Scholar 

  • Robertson, B.R. and Button, D.K. 1989. Characterizing bacteria according to population, cell size, and apparent DNA content by flow cytometry. Cytometry 10: 70–76.

    PubMed  CAS  Google Scholar 

  • Robinson, R.W. and Erdos, G.W. 1985. Immuno-electron microscopic identification of Methanosarcina spp. in anaerobic digester fluid. Canadian Journal of Microbiology 31: 839–844.

    Google Scholar 

  • Ross wall, T. and Kvillner, E. 1978. Principal components and factor analysis for the description of microbial populations. Advances in Microbial Ecology 2: 1–16.

    Google Scholar 

  • Rosswall, T. and Persson, I.-B. 1982. Functional description of bacterial populations from seven Swedish lakes. Limnologica 14: 1–16.

    Google Scholar 

  • Sackin, M.J. 1987. Computer programs for classification and identification, pp. 459#x2013;494 in Colwell, R.R. and Grigorova, R. (editors), Methods in Microbiology, vol. 19. Academic Press, London.

    Google Scholar 

  • Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    PubMed  CAS  Google Scholar 

  • Sanderson, K.E. 1976. Genetic relatedness in the family Enterobacteriaceae. Annual Review of Microbiology 30: 327–349.

    PubMed  CAS  Google Scholar 

  • Saye, D.J., Ogunseitan, O., Sayler, G.S., and Miller, R.V. 1987. Potential for transduction of plasmids in a natural freshwater environment: Effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa. Applied and Environmental Microbiology 53: 987–995.

    PubMed  CAS  Google Scholar 

  • Sayler, G.S., Shields, M.S., Tedford, E.T., Breen, A., Hooper, S.W., Sirotkin, K.M., and Davis, J.W. 1985. Application of DNA-DNA-colony hybridization to the detection of catabolic genotypes in environmental samples. Applied and Environmental Microbiology 49: 1295–1303.

    PubMed  CAS  Google Scholar 

  • Schleifer, K.H. and Kandier, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implication. Bacteriological Reviews 36: 407–477.

    PubMed  CAS  Google Scholar 

  • Schleifer, K.H. and Stackebrandt, E. 1983. Molecular systematics of prokaryotes. Annual Review of Microbiology 37: 143–187.

    PubMed  CAS  Google Scholar 

  • Schmaljohann, R., Pollingher, U., and Berman, T. 1987. Natural populations of bacteria in Lake Kinneret: Observations with scanning electron and epifluorescence microscopy. Microbial Ecology 13: 1–12.

    Google Scholar 

  • Seidl, P.H. and Schleifer, K.H. 1978. Rapid test for serological separation of Staphylococci from Micrococci. Applied and Environmental Microbiology 35: 479–482.

    PubMed  CAS  Google Scholar 

  • Selander, R.K. 1985. Protein polymorphism and the genetic structure of natural populations of bacteria, pp. 85–106 in Ohta, T. and Aoki, K. (editors), Population Genetics and Molecular Evolution. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Selander, R.K. and Levin, B.R. 1980. Genetic diversity and structure in Escherichia coli populations. Science 210: 545–547.

    PubMed  CAS  Google Scholar 

  • Selander, R.K. and Whittam, T.S. 1983. Protein polymorphism and the genetic structure of natural populations, pp. 89–114 in Nei, M. and Koehn, R.K. (editors), Evolution of Genes and Proteins. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Selander, R.K., Caugant, D.A., and Whittam, T.S. 1987. Genetic structure and variation in natural populations of Escherichia coli. pp. 1625–1648 in Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M., and Umbarger, H.E. (editors), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Selander, R.K., Caugant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N., and Whittam, T.S. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology 51: 873–884.

    PubMed  CAS  Google Scholar 

  • Selander, R.K., McKinney, R.M., Whittam, T.S., Bibb, W.F., Brenner, D.J., Nolte, F.S., and Pattison, P.E. 1985. Genetic structure of populations of Legionella pneumophila. Journal of Bacteriology 163: 1021–1037.

    PubMed  CAS  Google Scholar 

  • Shah, H.N. and Collins, M.D. 1980. Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. Journal of Applied Bacteriology 48: 75–87.

    PubMed  CAS  Google Scholar 

  • Shah, H.N., Al-Jalili, T.A.R., Elhag, K.M., and Mundegar, Z.R. 1987. Glucoses-phosphate dehydrogenase and malate dehydrogenase enzyme electrophoretic patterns amongst strains of Bacteroides fragilis. Journal of General Microbiology 133: 1975–1981.

    PubMed  CAS  Google Scholar 

  • Sharrock, R.A., Gourse, R.L., and Nomura, M. 1985. Inhibitory effect of high-level transcription of the bacteriophage lambda nutL region on transcription of rRNA in Escherichia coli. Journal of Bacteriology 163: 704–708.

    PubMed  CAS  Google Scholar 

  • Singleton, R., Jr., Denis, J., and Campbell, L.L. 1985. Whole-cell antigens of members of the sulfate-reducing genus Desulfovibrio. Archives of Microbiology 141: 195–197.

    CAS  Google Scholar 

  • Sneath, P.H.A. and Sokal, R.R. 1973. Numerical Taxonomy. The Principles and Practice of Numerical Classification. Freeman, San Francisco.

    Google Scholar 

  • Spector, M.P., Aliabadi, Z., Gonzalez, T., and Foster, J.W. 1986. Global control in Salmonella typhimurium: Two-dimensional electrophoretic analysis of starvation-, anaerobiosis-, and heat-shock-inducible proteins. Journal of Bacteriology 168: 420–424.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., Ludwig, W., and Fox, G.E. 1985.16S ribosomal RNA oligonucleotide cataloguing, pp. 75–107 in Gottschalk, G. (editor), Methods in Microbiology, vol. 18. Academic Press, London.

    Google Scholar 

  • Stahl, D.A., Flesher, B., Mansfield, H., and Montgomery, L. 1988. Use of phylogenet- ically based hybridization probes for studies of ruminal microbial ecology.Applied and Environmental Microbiology 54: 1079–1084.

    PubMed  CAS  Google Scholar 

  • Steen, H.B., Boye, E., Skastad, K., Bloom, B., Godal, T., and Mustafa, S. 1982. Applications of flow cytometry on bacteria: Cell cycle kinetics and drug effects, and quantitation of antibody binding. Cytometry 2: 249–257.

    PubMed  CAS  Google Scholar 

  • Stolp, H. and Starr, M.P. 1981. Principles of isolation, cultivation and conservation of bacteria, pp. 135–175 in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A. and Schlegel, H.G. (editors), Identification of Bacteria, vol. 1. Springer Verlag, Heidelberg.

    Google Scholar 

  • Stotzky, G. and Babich, H. 1986. Survival of, and genetic transfer by, genetically engineered bacteria in natural environments. Advances in Applied Microbiology 31: 93–138.

    PubMed  CAS  Google Scholar 

  • Strayer, R.F. and Tiedje, J.M. 1978. Application of the fluorescent-antibody technique to the study of a methanogenic bacterium in lake sediments. Applied and Environmental Microbiology 35: 192–198.

    PubMed  CAS  Google Scholar 

  • Syvanen, M. 1984. The evolutionary implications of mobile genetic elements. Annual Review of Genetics 18: 271–293.

    PubMed  CAS  Google Scholar 

  • Tayne, T.A., Cutler, J.E., and Ward, D.M. 1987. Use of Chloroflexus-specific antiserum to evaluate filamentous bacteria of a hot spring microbial mat. Applied and Environmental Microbiology 53: 1962–1964.

    PubMed  CAS  Google Scholar 

  • Van Dilla, M.A., Langlois, R.G., Pinkel, D., Yajko, D., and Hadley, W.K. 1983. Bacterial characterization by flow cytometry. Science 220: 620–622.

    PubMed  Google Scholar 

  • Ward, B.B. and Perry, M.J. 1980. Immunofluorescent assay for the marine ammonium- oxidizing bacterium Nitrosococcus oceanus. Applied and Environmental Microbiology 39: 913–918.

    CAS  Google Scholar 

  • Ward, B.B. and Carlucci, A.F. 1985. Marine ammonia- and nitrite-oxidizing bacteria: Serological diversity determined by immunofluorescence in culture and in the environment. Applied and Environmental Microbiology 50:194–201.

    PubMed  CAS  Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandier, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., Starr, M.P., and Trüper, H.G. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic Bacteriology 37: 463–464.

    Google Scholar 

  • Weller, R. and Ward, D.M. 1989. Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Applied and Environmental Microbiology 55: 1818–1822.

    PubMed  CAS  Google Scholar 

  • Whittam, T.S., Ochman, H., and Selander, R.K. 1983. Multilocus genetic structure in natural populations of Escherichia coli. Proceedings of the National Academy of Sciences, USA 80: 1751–1755.

    CAS  Google Scholar 

  • Williams, R.A.D. and Shah, H.N. 1980. Enzyme patterns in bacterial classification and identification, pp.299–315 in Goodfellow, M. and Board, R.G. (editors), Microbiological Classification and Identification. Academic Press, London.

    Google Scholar 

  • Williams, S.T., Goodfellow, M., and Vickers, J.C. 1984. New microbes from old habitats? pp. 219–256 in Kelly, D.P. and Carr, N.G. (editors), The Microbe 1984, II: Procaryotes and Eucaryotes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Witzel, K.-P., Krambeck, H.J., and Overbeck, H.J. 1981. On the structure of bacterial communities in lakes and rivers—a comparison with numerical taxonomy of isolates. Internationale Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 21: 1365–1370.

    Google Scholar 

  • Witzel, K.-P., Overbeck, H.J., and Moaledj, K. 1982a. Microbial communities in lake Plußsee—an analysis with numerical taxonomy of isolates. Archiv für Hydrobiologie 94: 38–52.

    Google Scholar 

  • Witzel, K.-P., Moaledj, K., and Overbeck, H.J. 1982b. A numerical taxonomic comparison of oligocarbophilic and saprophytic bacteria isolated from lake Plußsee. Archiv für Hydrobiologie 95: 507–520.

    Google Scholar 

  • Xu, H.-S., Roberts, N., Singleton, F.L., Attwell, R.W., Grimes, D.J., and Colwell, R.R. 1982. Survival and viability of nonculturableEscherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology 8: 313–323.

    Google Scholar 

  • Yentsch, C.M., Horan, P.K., Muirhead, K., Dortsch, Q., Haugen, E., Legendre, L., Murphy, L.S., Perry. M.J., Phinney, D.A., Pomponi, S.A., Spinrad, R.W., Wood, A.M., Yentsch, C.S., and Zahuranec, B.J. 1983. Flow cytometry and cell sorting: a technique for analysis and sorting of aquatic particles. Limnology and Oceanography 28: 1275–1280.

    Google Scholar 

  • Zuber, H. 1981. Structure and function of thermophilic enzymes, pp. 114–127 in Eggerer, H. and Huber, R. (editors), Structural and Functional Aspects of Enzyme Catalysis. Springer-Verlag, Heidelberg.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Witzel, KP. (1990). Approaches to Bacterial Population Dynamics. In: Overbeck, J., Chróst, R.J. (eds) Aquatic Microbial Ecology. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3382-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3382-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7991-4

  • Online ISBN: 978-1-4612-3382-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics