Skip to main content

Microbial Ectoenzymes in Aquatic Environments

  • Chapter
Aquatic Microbial Ecology

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

During the past decade an increasing number of ecological studies have considered the complexity of aquatic environments. One major outcome of these studies has been an accelerated interest in the role of microheterotrophs and the mode by which organic matter is made available to them. The heterotrophic microorganisms are the key level at which the metabolism of the whole ecosystem is affected, i.e., nutrient cycling, organic matter transformation and mineralization, and energy flow. The measurement of microbial activity in natural waters is very important for understanding the dynamic aspects of the functioning of the whole ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S. 1981. Chemical Communication at the Microbial Level vol. 1. CRC Press, Inc., Boca Raton, 184 pp.

    Google Scholar 

  • Aaronson, S. and Patni, N.J. 1976. The role of surface and extracellular phosphatases in the phosphorus requirement of Chromonas Limnology and Oceanography 21: 838–845.

    CAS  Google Scholar 

  • Aizawa, K. and Miyachi, S. 1986. Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. Federation of European Microbiology Societies, Microbiology Review 39: 215–233.

    Article  CAS  Google Scholar 

  • Ammerman, J.W. and Azam, F. 1985. Bacterial 5’-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus regeneration. Science 227: 1338–1340.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, F.B. 1983. Biochemistry, 2nd edition. Oxford University Press, New York, 653 pp.

    Google Scholar 

  • Azam, F. and Cho, B.C. 1987. Bacterial utilization of organic matter in the sea. pp. 261–281 in Fletcher, M., Gray, T.R.G., and Jones, J.G. (editors), Ecology of Microbial Communities. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bengtsson, G. 1988. The impact of dissolved amino acids on protein and cellulose degradation in stream waters. Hydrobiologia 164: 97–102.

    Article  CAS  Google Scholar 

  • Berg, H.C. 1969. Sulphanilic acid diazonium salt: A label for the outside of the human erythrocyte membrane. Biochimica et Biophysica Acta 183: 65–78.

    Article  PubMed  CAS  Google Scholar 

  • Berman, T. 1970. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnology and Oceanography 15: 663–674.

    Article  CAS  Google Scholar 

  • Berry, R.K. and Dekker, R.F.H. 1984. Induction studies showing evidence of the similarities between an inducible intracellular and extracellular β-D-glucosidase produced by a species of Monilia. Federation of European Microbiology Societies, Microbiology Letters 21: 309–312.

    CAS  Google Scholar 

  • Blobel, G., Walter, P., Chang, C.N., Goldman, B.M., Erickson, A.H., and Lingappa, V.R. 1979. Translation of proteins across membranes: the signal hypothesis and beyond. Symposium of Society of Experimental Biology 33: 9–36.

    CAS  Google Scholar 

  • Botsford, J.L. 1981. Cyclic nucleotides in prokaryotes. Microbiological Reviews 45: 620–645.

    PubMed  CAS  Google Scholar 

  • Burns, R.G. 1983. Extracellular enzyme—substrate interactions in soil. pp. 249–298 in Slater, J.H., Whittenbury, R., and Wimpenny, J.W.T. (editors), Microbes in Their Natural Environments. Cambridge University Press, London.

    Google Scholar 

  • Chaloupka, J. and Krumphanzl, V. 1987. Extracellular Enzymes of Microorganisms. Plenum Press, New York, 216 pp.

    Google Scholar 

  • Chróst, R.J. 1984. Use of 14C-dissolved organic carbon (RDOC) released by algae as a realistic tracer for heterotrophic activity measurements for aquatic bacteria. Archiv für Hydrobiologie, Ergebnisse der Limnologie 19: 207–214.

    Google Scholar 

  • Chróst, R.J. 1986. Algal—bacterial metabolic coupling in the carbon and phosphorus cycle in lakes, pp. 360–366 in Megusar, F., and Gantar, M. (editors), Perspectives in Microbial Ecology. Slovene Society of Microbiology, Ljubljana.

    Google Scholar 

  • Chróst, R.J. 1988. Phosphorus and microplankton development in an eutrophic lake. Acta Microbiologica Polonica 37: 205–225.

    Google Scholar 

  • Chróst, R.J. 1989. Characterization and significance of β-glucosidase activity in lake water. Limnology and Oceanography 34: 660–672.

    Article  Google Scholar 

  • Chróst, R.J. and Faust, M.A. 1983. Organic carbon release by phytoplankton: its composition and utilization by bacterioplankton. Journal of Plankton Research 5: 477–493.

    Article  Google Scholar 

  • Chróst, R.J. and Krambeck, H.J. 1986. Fluorescence correction for measurements of enzyme activity in natural waters using methylumbelliferyl-substrates. Archiv für Hydrobiologie 106: 79–90.

    Google Scholar 

  • Chróst, R.J. and Overbeck, J. 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake Plußsee (north German eutrophic lake). Microbial Ecology 13: 229–248.

    Article  Google Scholar 

  • Chróst, R.J., Siuda, W., and Halemejko, G.Z. 1984. Longterm studies on alkaline phosphatase activity (APA) in a lake with fish-aquaculture in relation to lake eutrophication and phosphorus cycle. Archiv für Hydrobiologie, Supplement 70: 1–32.

    Google Scholar 

  • Chróst, R.J., Halemejko, G.Z., and Overbeck, J. 1986a. Is proteolysis dependent on phosphorus in freshwaters? Federation of European Microbiology Societies, Microbiology Letters 37: 199–202.

    Article  Google Scholar 

  • Chróst, R.J., Wcislo, R., and Halemejko, G.Z. 1986b. Enzymatic decomposition of organic matter by bacteria in an eutrophic lake. Archiv für Hydrobiologie 107: 145–165.

    Google Scholar 

  • Chróst, R.J., Siuda, W., Albrecht, D., and Overbeck, J. 1986c. A method for determining enzymatically hydrolyzable phosphate (EHP) in natural waters. Limnology and Oceanography 31: 662–667.

    Article  Google Scholar 

  • Chróst, R.J., Münster, U., Rai, H., Albrecht, D., Witzel, P.K., and Overbeck, J. 1989. Photosynthetic production and exoenzymatic degradation of organic matter in euphotic zone of an eutrophic lake. Journal of Plankton Research 11: 223–242.

    Article  Google Scholar 

  • Critchley, C. and Andrews, T.J. 1984. Photosynthesis and plasmalemma permeability properties of Prochloron. Archives of Microbiology 138: 247–250.

    Article  CAS  Google Scholar 

  • Cunningham, H.W. and Wetzel, R.G. 1989. Kinetic analysis of protein degradation by a freshwater wetland sediment community. Applied and Environmental Microbiology 55: 1963–1967.

    PubMed  CAS  Google Scholar 

  • Darnell, Jr. J.E. 1982. Variety in the level of gene control in eukaryotic cells. Nature 297: 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Davis, B.D. and Tai, P.C. 1980. The mechanism of protein secretion across membranes. Nature 283: 433–438.

    Article  PubMed  CAS  Google Scholar 

  • Deason, T.R. 1983. Cell wall structure and composition as taxonomic charcters in the coccoid Chlorophyceae Journal of Phycology 19: 248–251.

    Article  Google Scholar 

  • DePierre, J.W. and Karnovsky, M.L. 1974. Ecto-enzymes of the guinea-pig polymorphonuclear leukocyte. II. Properties and suitability as markers for the plasma membrane. Journal of Biological Chemistry 249: 7121–7129.

    PubMed  CAS  Google Scholar 

  • Dowd, J.E. and Riggs, D.S. 1965. A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. Journal of Biological Chemistry 240: 863–869.

    PubMed  CAS  Google Scholar 

  • Drews, G. 1973. Fine structure and chemical composition of the cell envelopes, pp. 99–116 in Carr, N.G., and Whitton, B.A. (editors), The Biology of Blue-Green Algae. Blackwell, Oxford.

    Google Scholar 

  • Drews, G. and Giesbrecht, P. 1971. Die Bauelemente der Bakterien und Blaualgen, pp. 407–467 in Metzner, H. (editor), Die Zelle. Wissenschaftliche Verlagsgesellschaft, Stuttgart.

    Google Scholar 

  • Fenchel, T. 1987. Ecology of Protozoa. Science Tech., Madison, 193 pp.

    Google Scholar 

  • Francko, D. 1984. Phytoplankton metabolism and cyclic nucleotides. II. Nucleotide-induced perturbations of alkaline phosphatase activity. Archiv für Hydrobiologie 100: 409–421.

    CAS  Google Scholar 

  • Frankenberger, W.T. and Johanson, A.J.B. 1983. Amidohydrolase activity in natural waters. Polskie Archiwum Hydrobiologii 30: 319–329.

    CAS  Google Scholar 

  • Frankenberger, W.T. and Johanson, A.J.B. 1986. Use of plasmolytic agents and antiseptics in soil enzyme assays. Soil Biology and Biochemistry 18: 209–214.

    Article  CAS  Google Scholar 

  • Glenn, A.R. 1976. Production of extracellular proteins by bacteria. Annual Reviews of Microbiology 30: 41–62.

    Article  CAS  Google Scholar 

  • Halemejko, G.Z. and Chróst, R.J. 1984. The role of phosphatases in phosphorus mineralization during decomposition of lake phytoplankton blooms. Archiv für Hydrobiologie 101: 489–502.

    CAS  Google Scholar 

  • Halemejko, G.Z. and Chróst, R.J. 1986. Enzymatic hydrolysis of proteinaceous particulate and dissolved material in an eutrophic lake. Archiv für Hydrobiologie 107:1–21.

    CAS  Google Scholar 

  • Hollibaugh, J.T. and Azam, F. 1983. Microbial degradation of dissolved proteins in seawater. Limnology and Oceanography 28: 1104–1116.

    Article  CAS  Google Scholar 

  • Hoppe, H.G. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Marine Ecology Progress Series 11: 299–308.

    Article  CAS  Google Scholar 

  • Hoppe, H.G. 1986. Degradation in sea water, pp. 453–474 in Rehm, H.J. and Reed, G. (editors), Biotechnology. Vol. 8. VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Hoppe, H.G., Kim, S.J., and Gocke, K. 1988. Microbial decomposition in aquatic environments: combined processes of extracellular enzyme activity and substrate uptake. Applied and Environmental Microbiology 54: 784–790.

    PubMed  CAS  Google Scholar 

  • Hoppe, H.G., Gocke, K., Zamorano, D., and Zimmermann, R. 1983. Degradation of macromolecular organic compounds in a tropical lagoon (Cienaga Grande, Colombia) and its ecological significance. Internationale Revue gesamten Hydrobiologie 68: 811–824.

    Article  CAS  Google Scholar 

  • Imanaka, T. Tanaka, T., Tsunekawa, H. and Aiba, S. 1981. Cloning of the genes for penicillinase, penP and penI, of Bacillus licheniformis in some vector plasmids and their expression inEscherichia coli, Bacillus subtilis and Bacillus licheniformis. Journal of Bacteriology 147: 776–786.

    PubMed  CAS  Google Scholar 

  • Inouye, M. and Halegoua, S. 1980. Secretion, and membrane localization of proteins in Escherichia coli. CRC Critical Reviews in Biochemistry 7: 339–371.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, T.R. and Azam, F. 1985. Role of bacteria in copepod fecal pellet decomposition: colonization, growth rates and mineralization. Bulletin of Marine Sciences 35: 495–502.

    Google Scholar 

  • Jacobsen, T.R. and Rai, H. 1988. Determination of aminopeptidase activity in lakewater by a short term kinetic assay and its application in two lakes of differing eutro-phication. Archiv für Hydrobiologie 113: 359–370.

    CAS  Google Scholar 

  • Jansson, M., Olsson, H. and Broberg, O. 1981. Characterization of acid phosphatases in the acidified lake Gardsjon, Sweden. Archiv für Hydrobiologie 92: 377–395.

    CAS  Google Scholar 

  • Jones, J.G. 1972. Studies on freshwater microorganisms: phosphatase activity in lakes of differing degrees of eutrophication. Journal of Ecology 60: 777–791.

    Article  CAS  Google Scholar 

  • Kalisz, H.M. 1988. Microbial proteinases, pp. 1–66 in Fiechter, A. (editor), Advances in Biochemical Engineering/-Biotechnology. Enzyme Studies, vol. 36. Springer Verlag, New York.

    Google Scholar 

  • Karnovsky, M.L. 1986. Ectoenzymes: their modulation and similarity to certain enzymes of intracellular membranes, pp. 3–13 in Kreutzberg, G.W., Reddington, M., and Zimmermann, H. (editors), Cellular Biology of Ectoenzymes. Springer Verlag, Berlin.

    Google Scholar 

  • King, G.M. 1986. Characterization of β-glucosidase activity in intertidal marine sediments. Applied and Environmental Microbiology 51: 373–380.

    PubMed  CAS  Google Scholar 

  • King, G.M. and Klug, M.J. 1980. Sulfhydrolase activity in sediments of Wintergreen Lake, Kalamazoo County, Michigan. Applied and Environmental Microbiology 39: 950–956.

    PubMed  CAS  Google Scholar 

  • Kobori, H., Taga, N. and Simidu, U. 1979. Properties and generic composition of phosphatase producing bacteria in coastal and oceanic waters. Bulletin of Japanese Society of Scientific Fisheries 45: 1429–1433.

    Article  CAS  Google Scholar 

  • Kreil, G. 1981. Transfer of proteins across membranes. Annual Reviews of Biochemistry 50: 317–348.

    Article  CAS  Google Scholar 

  • Leatherbarrow, R.J. 1987. Enzfitter. A Non-linear Regression Data Analysis Program for the IBM PC. Elsevier-Biosoft, Cambridge, pp. 91.

    Google Scholar 

  • Little, J.E., Sjogren, R.E., and Carson, G.R. 1979. Measurement of proteolysis in natural waters. Applied and Environmental Microbiology 37: 900–908.

    PubMed  CAS  Google Scholar 

  • Lochte, M.A. and Ford, T.E. 1986. Metabolism of dissolved organic matter by attached microorganisms in rivers, pp. 367–374 in Megusar, F. and Gantar, M. (editors), Perspectives in Microbial Ecology. Slovene Society of Microbiology, Ljubljana.

    Google Scholar 

  • Lundin, A., Arner, P., and Hellmer, J. 1989. A new linear plot for standard curves in kinetic substrate assays extended above the Michaelis-Menten constant: application to a luminometric assay of glycerol. Analytical Biochemistry 177: 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, M. and Taga, N. 1973. Deoxiribonuclease activity in seawater and sediment. Marine Biology 20: 58–63.

    Article  CAS  Google Scholar 

  • McConahey, P.J. and Dixon, F.J. 1966. A method for trace iodination of proteins for immunological studies. International Revue of Allergy and Applied Immunology 29: 185–189.

    Article  CAS  Google Scholar 

  • Meyer, D.H. 1976. Secretion of β-glucosidase by Ochromonas danica. Archives of Microbiology 109: 263–270.

    Article  CAS  Google Scholar 

  • Meyer, D.I., Krause, E., and Dobberstein, B. 1982. Secretory protein translocation across membrane—role of the “docking protein”. Nature297: 647–650.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Reil, L.A. 1981. Enzymatic decomposition of proteins and carbohydrates in marine sediments: methodology and field observations during spring. Kieler Meeresforschungen 5: 311–317.

    CAS  Google Scholar 

  • Meyer-Reil, LA. 1986. Measurement of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments. Marine Ecology Progress Series 31: 143–149.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L.A. 1987. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Applied and Environmental Microbiology 53: 1748–1755.

    PubMed  CAS  Google Scholar 

  • Molano, J., Duran, A., and Cabib, E. 1977. A rapid and sensitive assay for chitinase using tritiated chitin. Annales of Biochemistry 83: 648–656.

    Article  CAS  Google Scholar 

  • Münster, U. 1984. Distribution, dynamic and structure of free dissolved carbohydrates in the Plußsee, a North German eutrophic lake. Internationale Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 22: 929–935.

    Google Scholar 

  • Münster, U. 1985. Investigations about structure, distribution and dynamics of different organic substrates in the DOM of lake Plußsee. Archiv für Hydrobiologie, Supplement 70: 429–480.

    Google Scholar 

  • Münster, U., Einio, P., and Nurminen, J. 1989. Evaluation of the measurements of extracellular enzyme activities in a polyhumic lake by means of studies with 4-methylumbelliferyl-substrates. Archiv für Hydrobiologie 115: 321–337.

    Google Scholar 

  • Nikaido, H. and Nakae, T. 1979. The outer membrane of Gram-negative bacteria. Advances of Microbial Physiology 20: 163–250.

    Article  CAS  Google Scholar 

  • Nisbet, B. 1984. Nutrition and Feeding Strategies in Protozoa. Croom Helm, London, 156 pp.

    Google Scholar 

  • Olsson, H. 1983. Origin and production of phosphatases in the acid lake Gardsjon. Hydrobiologia 101: 49–58.

    Article  CAS  Google Scholar 

  • Pace, M.L. 1988. Bacterial mortality and the fate of bacterial production. Hydrobiologia 159: 41–49.

    Article  Google Scholar 

  • Paul, J.H., Jeffrey, W.H., and DeFlaun, M.F. 1987. Dynamics of extracellular DNA in the marine environment. Applied and Environmental Microbiology 53: 170–179.

    PubMed  CAS  Google Scholar 

  • Perry, M.J. 1972. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Marine Biology 15: 113–119.

    Article  CAS  Google Scholar 

  • Petterson, K. 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus deficiency indicators in Lake Erken. Archiv für Hydrobiologie 89: 54–87.

    Google Scholar 

  • Pollock, M.R. 1962. Exoenzymes. pp. 121–178 in Gunsalus, I.C., and Stanier, R.Y. (editors), The Bacteria. Vol. 4. Academic Press, New York.

    Google Scholar 

  • Pomeroy, L.R. and Wiebe, W.J. 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.

    Article  Google Scholar 

  • Prats, M. and Forestier, J.P. 1988. A new approach to Michaelis-Menten kinetics and enzyme inhibition. Biochemical Education 16: 217–221.

    Article  CAS  Google Scholar 

  • Priest, F.G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews 41: 711–753.

    CAS  Google Scholar 

  • Priest, F.G. 1984. Extracellular Enzymes. Van Nostrand Reinhold (UK) Co. Ltd., Wokingham, 79 pp.

    Google Scholar 

  • Rego, J.V., Billen, G., Fontigny, A., and Somville, M. 1985. Free and attached proteolytic activity in water environments. Marine Ecology Progress Series 21: 245–249.

    Article  CAS  Google Scholar 

  • Reichardt, W. 1971. Catalytic mobilization of phosphate in lake water and by Cyano-phyta. Hydrobiologia 38: 377–394.

    Article  CAS  Google Scholar 

  • Reichardt, W., Overbeck, J., and Steubing, L. 1967. Free dissolved enzymes in lake waters. Nature 216: 1345–1347.

    Article  CAS  Google Scholar 

  • Rice, R.H. and Means, G.E. 1971. Radioactive labelling of proteins in vitro. Journal of Biological Chemistry 246: 831–832.

    PubMed  CAS  Google Scholar 

  • Rogers, H.J. 1961. The dissimilation of high molecular weight organic substrates, pp. 261–318 in Gunsalus, I.C., and Stanier, R.Y. (editors), The Bacteria. Vol. 2. Academic Press, New York.

    Google Scholar 

  • Rogers, H.J., Perkins, H.R., and Ward, J.B. 1980. Microbial Cell Wall and Membranes. Chapman and Hall, London, 367 pp.

    Google Scholar 

  • Roso, A.L. and Azam, F. 1987. Proteolytic activity in coastal oceanic waters: depth distribution and relationship to bacterial populations. Marine Ecology Progress Series 41: 231–240.

    Article  Google Scholar 

  • Savageau, M.A. 1979. Autogenous and classical control of gene expression: a general theory and experimental evidence, pp. 57–108 in Goldberg, R.F. (editor), Biological Regulation and Develpment. Vol. 1, Gene Expression. Plenum Press, New York.

    Google Scholar 

  • Scherrer, R. and Gerhardt, P. 1971. Molecular sieving by the Bacillus megaterium cell wall and protoplast. Journal of Bacteriology 107: 718–735.

    PubMed  CAS  Google Scholar 

  • Schneider, Y.J., Tulkens, D., deDuve, D., and Trouet, A. 1979. Fate of plasma membrane during endocytosis. II. Evidence for recycling (shuttle) of plasma membrane constituents. Journal of Cellular Biology 82: 380–387.

    Article  Google Scholar 

  • Siuda, W. 1984. Phosphatases and their role in organic phosphorus transformation in natural waters. A review. Polskie Archiwum Hydrobiologii 31: 207–233.

    CAS  Google Scholar 

  • Siuda, W. and Chrost, R.J. 1987. The relationship between alkaline phosphatase (APA) activity and phosphate availability for phytoplankton and bacteria in eutrophic lakes. Acta Microbiologica Polonica 36: 247–257.

    Google Scholar 

  • Smucker, R.A. and Kim, C.K. 1987. Chitinase induction in an estuarine system, pp. 347–355 in Llevellyn, G.C., and O’Rear, C.O. (editors), Biodeterioration Research. Plenum Press, New York.

    Google Scholar 

  • Somville, M. 1984. Measurement and study of substrate specificity of exoglucosidase activity in eutrophic water. Applied and Environmental Microbiology 48:1181–1185.

    PubMed  CAS  Google Scholar 

  • Somville, M. and Billen, G. 1983. A method for determining exoproteolytic activity in natural waters. Limnology and Oceanography 28: 190–193.

    Article  CAS  Google Scholar 

  • Stevens, R.J. and Parr, M.P. 1977. The significance of alkaline phosphatase activity in Lough Neagh. Freshwater Biology 7: 351–355.

    Article  CAS  Google Scholar 

  • Verner, K. and Schatz, G. 1988. Protein translocation across membranes. Science 241: 1307–1313.

    Article  PubMed  CAS  Google Scholar 

  • Verstraeke, W., Voets, J.P., and van Lancker, P. 1976. Evaluation of some enzymatic methods to measure the bioactivity of aquatic environments. Hydrobiologia 49: 257–266.

    Article  Google Scholar 

  • Wickner, W. 1979. The asembly of proteins into biological membranes: the membrane trigger hypothesis. Annual Reviews of Biochemistry 48: 23–45.

    Article  CAS  Google Scholar 

  • Williams, P.J.LeB. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforschungen, Sonderheft 5: 1–28.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Chróst, R.J. (1990). Microbial Ectoenzymes in Aquatic Environments. In: Overbeck, J., Chróst, R.J. (eds) Aquatic Microbial Ecology. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3382-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3382-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7991-4

  • Online ISBN: 978-1-4612-3382-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics