Preferred Interaction Patterns from Crystallographic Databases

  • R. Scott Rowland
  • Frank H. Allen
  • W. Michael Carson
  • Charles E. Bugg

Abstract

A knowledge of three-dimensional structure, in all of its aspects, is an essential prerequisite of the molecular modelling process. This knowledge may be divided, on energetic grounds, into two categories. Firstly, information is required about the covalent aspects of three dimensional structure — bond lengths, valence angles, and conformational data which dictate the overall molecular shape. Secondly, geometrical descriptions are needed of the much weaker interactions by which atoms and molecules associate with each other in a non-bonded sense. Crystallography is unique in its ability to provide direct experimental results in both of these areas. The technique is now being applied to molecules of ever-increasing size and complexity and in ever-increasing numbers. Details of well over 100,000 crystal structures have been published — some 400 proteins and biological macromolecules, 76,000 small molecules containing organic carbon, and nearly 40,000 inorganic, mineral and metal structures: All of this information is of immense value and the advent of crystallographic databases makes the data more readily available in an organized form. It is now a relatively simple matter to locate relevant structures and extract their coordinates for use in modelling studies.

Keywords

Benzene Tyrosine Amide Glycine Cysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R., Watson, D. G. (1979). The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information. Acta. Crystallogr., Sect. B; Struct. Sci. B35, 2331–2339.Google Scholar
  2. Allen, F. H., Bergerhoff, G., and Sievers, R. (1987a). Crystallographic Databases. Polycrystal Book Service, Dayton, Ohio.Google Scholar
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., and Taylor, R. (1987b). Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. II, S1–S19.Google Scholar
  4. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. The Protein Data Bank: A computer-based archival file for macromolecular structures. (1977). J. Mol. Biol. 112, 535–542.PubMedCrossRefGoogle Scholar
  5. Bondi, A. (1964). van der Waals volumes and radii. J. Phys. Chem. 68, 441–451.CrossRefGoogle Scholar
  6. Bryant, S. H., and Amzel, L. M. (1987). Correctly folded proteins make twice as many hydrophobic contacts. Int. J. Peptide Protein Res. 29, 46–52.CrossRefGoogle Scholar
  7. Burley, S. K., and Petsko, G. A. (1985). Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28.PubMedCrossRefGoogle Scholar
  8. Burley, S. K., and Petsko, G. A. (1986). Amino-aromatic interactions in proteins. FEBS 203, 139–143.CrossRefGoogle Scholar
  9. Carson, M., and Hermans, J. (1985). Molecular dynamics workshop laboratory. In “Molecular Dynamics and Protein Structure” (J. Hermans,ed.), pp. 165–166. Polycrystal Book Service, Dayton, Ohio.Google Scholar
  10. Chothia, C. H. (1974). Hydrophobic bonding and accessible surface area in proteins. Nature 248, 338–339.PubMedCrossRefGoogle Scholar
  11. Dunitz, J. (1979) X-ray Analysis and the Structure of Organic Molecules. Cornell University Press, Ithaca.Google Scholar
  12. Eisenberg, D. and McLachlan, A. D. (1986). Solvation energy in protein folding and binding. Nature 319, 199–203.PubMedCrossRefGoogle Scholar
  13. Frömmel, C. (1984). The apolar surface area of amino acids and its empirical correlation with hydrophobic free energy. J. Theor. Biol. 111, 247–260.PubMedCrossRefGoogle Scholar
  14. Hamilton, W.C. and Ibers, J.A. (1968). Hydrogen Bonding in Solids. Benjamin,New York.Google Scholar
  15. Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chein. 14, 1–63.CrossRefGoogle Scholar
  16. Kroon, J., Kanters, J.A., van Duijneveldt-van de Rijdt, J.G.C.M., van Duijneveldt, F.B., and Vliegenthart, J.A. (1975). O-H…O hydrogen bonds in molecular crystals: A statistical and quantum-chemical analysis. J. Mol. Struct. 24, 109–129.CrossRefGoogle Scholar
  17. Lee, B. and Richards, F. M. (1971). The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400.PubMedCrossRefGoogle Scholar
  18. Lifson, S. and Sander, C. (1980). Specific recognition in the tertiary structure of ¦Â-sheets of proteins. J. Mol. Biol. 139, 627–639.PubMedCrossRefGoogle Scholar
  19. Murray-Rust, P., and Motherwell, S. (1978). Computer retrieval and analysis of molecular geometry. III. Geometry of the 0–1’-aminofuranoside fragment. Acta. Crystallogr., Sect. B; Struct. Sci. B34, 2534–2546.Google Scholar
  20. Murray-Rust, P., and Raftery, J. (1985). Computer analysis of molecular geometry. VI. Classification of differences in conformation. J. Mol. Graphics 3, 50–59.CrossRefGoogle Scholar
  21. Narayana, S. V. L. and Argos, P. (1984). Residue contacts in protein structures and implications for protein folding. Int. J. Peptide Protein Res. 24, 25–39.CrossRefGoogle Scholar
  22. Nyburg, S.C., and Faerman, C.H., (1985). A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br, and I bonded to carbon. Acta. Crystallogr., Sect. B; Struct. Sci. B41, 274–279.CrossRefGoogle Scholar
  23. Pauling, L. (1939). The Nature of the Chemical Bond. Cornell University Press, Ithaca.Google Scholar
  24. Pimentel, G.C. and McClellan, A.L. (1960). The Hydrogen Bond. Freeman, San Francisco.Google Scholar
  25. Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R., and Zehfus, M. H. (1985). Hydrophobicity of amino acid residues in globular proteins. Science 229, 834–838.PubMedCrossRefGoogle Scholar
  26. Rosenfield, R.E., Jr., Parthasarathy, R., and Dunitz, J.D. (1977). Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J. Am. Chem. Soc. 99, 4860–4862.CrossRefGoogle Scholar
  27. Rosenfield, R.E., Jr., Swanson, S.M., Meyer, E.F., Jr., Carrell, H.L., and Murrayrust, P. (1984). Mapping the atomic environment of functional groups: turning 3D scatter plots into pseudo-density contours. J. Mol. Graphics 2, 43–46.CrossRefGoogle Scholar
  28. Schulz, G. E. and Schirmer, R. H. (1979). Principles of Protein Structure. Springer-Verlag, New York.Google Scholar
  29. Singh, J., and Thornton, J. M. (1985). The interaction between phenylalanine rings in proteins. FEBS 191, 1–6.CrossRefGoogle Scholar
  30. Sutor, D.J. (1962). The C-H…O hydrogen bond in crystals. Nature 195, 68–69.CrossRefGoogle Scholar
  31. Taylor, R., and Kennard, O. (1982). Crystallographic evidence for the existence of C-H…O, C-H…N, and C-H…Cl hydrogen bonds. J. Am. Chem. Soc. 104, 5063–5070.CrossRefGoogle Scholar
  32. Taylor, R., Kennard, O., and Versicbel, W. (1983). Geometry of the N-H…O=C hydrogen bond. 1. Lone-pair directionality. J. Am. Chem. Soc. 105, 5761–5766.CrossRefGoogle Scholar
  33. Thomas, K. A., Smith, G. M., Thomas, T. B., and Feldmann, R. J. (1982). Electronic distributions within protein phenylalanine aromatic rings are reflected by the three-dimensional oxygen atom environments. Proc. Natl. Acad. Sci. USA 79, 4843–4847.PubMedCrossRefGoogle Scholar
  34. Warme, P. K., and Morgan, R. S. (1978a). A survey of atomic interactions in 21 proteins. J. Mol. Biol. 118, 273–287.CrossRefGoogle Scholar
  35. Warme, P. K., and Morgan, R. S. (1978b). A survey of amino aid side-chain interactions in 21 proteins. J. Mol. Biol. 118, 289–304.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • R. Scott Rowland
  • Frank H. Allen
  • W. Michael Carson
  • Charles E. Bugg

There are no affiliations available

Personalised recommendations